Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties

Cited 263 time in webofscience Cited 0 time in scopus
  • Hit : 1122
  • Download : 0
Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 mu Wm(-1) K-2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate that phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. These findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2016-04
Language
English
Article Type
Article
Keywords

CONDUCTING POLYMER POLY(3,4-ETHYLENEDIOXYTHIOPHENE); AUGMENTED-WAVE METHOD; THIN-FILMS; THERMAL-CONDUCTIVITY; CHARGE-TRANSFER; SOLAR-CELLS; POWER; TRANSPORT; DIAMETER; DENSITY

Citation

NATURE ENERGY, v.1

ISSN
2058-7546
DOI
10.1038/nenergy.2016.33
URI
http://hdl.handle.net/10203/214637
Appears in Collection
NT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 263 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0