A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures

Cited 18 time in webofscience Cited 0 time in scopus
  • Hit : 480
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHa, Kyungyeonko
dc.contributor.authorJang, Eunseokko
dc.contributor.authorJang, Segeunko
dc.contributor.authorLee, Jong-Kwonko
dc.contributor.authorJang, Min Seokko
dc.contributor.authorChoi, Hoseopko
dc.contributor.authorCho, Jun-Sikko
dc.contributor.authorChoi, Mansooko
dc.date.accessioned2016-11-30T08:48:41Z-
dc.date.available2016-11-30T08:48:41Z-
dc.date.created2016-11-15-
dc.date.created2016-11-15-
dc.date.created2016-11-15-
dc.date.issued2016-02-
dc.identifier.citationNANOTECHNOLOGY, v.27, no.5-
dc.identifier.issn0957-4484-
dc.identifier.urihttp://hdl.handle.net/10203/214315-
dc.description.abstractWe report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multipin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.subjectBACK SURFACE REFLECTORS-
dc.subjectAG NANOWIRE-
dc.subjectLITHOGRAPHY-
dc.subjectENHANCEMENT-
dc.subjectPERFORMANCE-
dc.subjectTECHNOLOGY-
dc.subjectABSORPTION-
dc.subjectPLASMONICS-
dc.subjectELECTRODES-
dc.subjectSINGLE-
dc.titleA light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures-
dc.typeArticle-
dc.identifier.wosid000368894300010-
dc.identifier.scopusid2-s2.0-84954357538-
dc.type.rimsART-
dc.citation.volume27-
dc.citation.issue5-
dc.citation.publicationnameNANOTECHNOLOGY-
dc.identifier.doi10.1088/0957-4484/27/5/055403-
dc.contributor.localauthorJang, Min Seok-
dc.contributor.nonIdAuthorHa, Kyungyeon-
dc.contributor.nonIdAuthorJang, Eunseok-
dc.contributor.nonIdAuthorJang, Segeun-
dc.contributor.nonIdAuthorLee, Jong-Kwon-
dc.contributor.nonIdAuthorChoi, Hoseop-
dc.contributor.nonIdAuthorCho, Jun-Sik-
dc.contributor.nonIdAuthorChoi, Mansoo-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormultiple plasmon resonances-
dc.subject.keywordAuthorthree-dimensional nanostructure-
dc.subject.keywordAuthorlight trapping-
dc.subject.keywordAuthorthin-film solar cells-
dc.subject.keywordAuthornanoparticle assembly-
dc.subject.keywordPlusBACK SURFACE REFLECTORS-
dc.subject.keywordPlusAG NANOWIRE-
dc.subject.keywordPlusLITHOGRAPHY-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTECHNOLOGY-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusPLASMONICS-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusSINGLE-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0