A flexible multimodal tactile display array for virtual shape and texture

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 336
  • Download : 0
Multimodal tactile display systems that are capable of delivering versatile tactile information effectively are of great interest for virtual reality and tele-operation applications. In this paper, we present a new flexible multimodal tactile display system that delivers shape and texture information simultaneously using a single actuator. The proposed tactile display is actuated by a combination of electromagnetic and pneumatic forces and thus exhibits high tactile force to deliver shape information and large vibration amplitude to deliver texture information. In addition, the proposed tactile display device was implemented on a flexible PDMS structure to allow for tight attachment on any curved body to transfer reliable tactile information. By applying a current pulse of 300 mA for 5 ms, we readily controlled the state of the tactile actuator and measured the actuation displacement of 900 mu m and the generated force of 20.1 gf. The average vibration amplitude of 30 mu m was measured over a wide dynamic range (25-650 Hz) with an applied current of 74 mA. Lastly, by delivering various tactile information to users, we verified the functionalities of the implemented 4 x 1 multimodal tactile display array. User study results showed that the fabricated multimodal tactile display system successfully delivered both shape information with an accuracy of 73 % and texture information with an accuracy of 90 %. This work demonstrates the potential of our multimodal tactile display system for uses in various applications such as tele-operation, tactile communication, and visual presentation for visually impaired
Publisher
SPRINGER
Issue Date
2016-10
Language
English
Article Type
Article
Keywords

PERFORMANCE; ACTUATORS

Citation

MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, v.22, no.10, pp.2587 - 2594

ISSN
0946-7076
DOI
10.1007/s00542-015-2634-0
URI
http://hdl.handle.net/10203/214008
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0