Energy-Efficient Wi-Fi Sensing Policy Under Generalized Mobility Patterns With Aging

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 488
  • Download : 0
An essential condition precedent to the success of mobile applications based on Wi-Fi (e. g., iCloud) is an energy-efficient Wi-Fi sensing. Clearly, a good Wi-Fi sensing policy should factor in both inter-access point (AP) arrival time (IAT) and contact duration time (CDT) distributions of each individual. However, prior work focuses on limited cases of those two distributions (e. g., exponential) or proposes heuristic approaches such as Additive Increase (AI). In this paper, we first formulate a generalized functional optimization problem on Wi-Fi sensing under general inter-AP and contact duration distributions and investigate how each individual should sense Wi-Fi APs to strike a good balance between energy efficiency and performance, which is in turn intricately linked with users mobility patterns. We then derive a generic optimal condition that sheds insights into the aging property, underpinning energy-aware Wi-Fi sensing polices. In harnessing our analytical findings and the implications thereof, we develop a new sensing algorithm, called Wi-Fi Sensing with AGing (WiSAG), and demonstrate that WiSAG outperforms the existing sensing algorithms up to 37% through extensive trace-driven simulations for which real mobility traces gathered from hundreds of smartphones is used.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2016-08
Language
English
Article Type
Article
Keywords

USER MOBILITY

Citation

IEEE-ACM TRANSACTIONS ON NETWORKING, v.24, no.4, pp.2416 - 2428

ISSN
1063-6692
DOI
10.1109/TNET.2015.2468590
URI
http://hdl.handle.net/10203/213259
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0