Imputation methods for quantile estimation under missing at random

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 348
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYang, Shuko
dc.contributor.authorKim, Jae Kwangko
dc.contributor.authorShin, Dong Wanko
dc.date.accessioned2016-10-04T02:58:14Z-
dc.date.available2016-10-04T02:58:14Z-
dc.date.created2016-09-08-
dc.date.created2016-09-08-
dc.date.issued2013-
dc.identifier.citationSTATISTICS AND ITS INTERFACE, v.6, no.3, pp.369 - 377-
dc.identifier.issn1938-7989-
dc.identifier.urihttp://hdl.handle.net/10203/213005-
dc.description.abstractImputation is frequently used to handle missing data for which multiple imputation is a popular technique. We propose a fractional hot deck imputation which produces a valid variance estimator for quantiles. In the proposed method, the imputed values are chosen from the set of respondents and are assigned with proper fractional weights that use a density function for the working model. In addition, we consider a nonparametric fractional imputation method based on nonparametric kernel regression, avoiding a parametric distribution assumption and thus giving more robustness. The resulting estimator can be called nonparametric fractionally imputation estimator. Valid variance estimation is also discussed. A limited simulation study compares the proposed methods favorably with other existing methods-
dc.languageEnglish-
dc.publisherINT PRESS BOSTON-
dc.subjectMULTIPLE-IMPUTATION-
dc.subjectMEAN FUNCTIONALS-
dc.titleImputation methods for quantile estimation under missing at random-
dc.typeArticle-
dc.identifier.wosid000325167700008-
dc.identifier.scopusid2-s2.0-84885127414-
dc.type.rimsART-
dc.citation.volume6-
dc.citation.issue3-
dc.citation.beginningpage369-
dc.citation.endingpage377-
dc.citation.publicationnameSTATISTICS AND ITS INTERFACE-
dc.contributor.localauthorKim, Jae Kwang-
dc.contributor.nonIdAuthorYang, Shu-
dc.contributor.nonIdAuthorShin, Dong Wan-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorBahadur representation-
dc.subject.keywordAuthorEstimating equation-
dc.subject.keywordAuthorFractional hot deck imputation-
dc.subject.keywordAuthorJackknife variance estimator-
dc.subject.keywordAuthorLinearization method-
dc.subject.keywordAuthorNonparametric imputation-
dc.subject.keywordAuthorWoodruff variance-
dc.subject.keywordPlusMULTIPLE-IMPUTATION-
dc.subject.keywordPlusMEAN FUNCTIONALS-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0