DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yang, Shu | ko |
dc.contributor.author | Kim, Jae Kwang | ko |
dc.contributor.author | Shin, Dong Wan | ko |
dc.date.accessioned | 2016-10-04T02:58:14Z | - |
dc.date.available | 2016-10-04T02:58:14Z | - |
dc.date.created | 2016-09-08 | - |
dc.date.created | 2016-09-08 | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | STATISTICS AND ITS INTERFACE, v.6, no.3, pp.369 - 377 | - |
dc.identifier.issn | 1938-7989 | - |
dc.identifier.uri | http://hdl.handle.net/10203/213005 | - |
dc.description.abstract | Imputation is frequently used to handle missing data for which multiple imputation is a popular technique. We propose a fractional hot deck imputation which produces a valid variance estimator for quantiles. In the proposed method, the imputed values are chosen from the set of respondents and are assigned with proper fractional weights that use a density function for the working model. In addition, we consider a nonparametric fractional imputation method based on nonparametric kernel regression, avoiding a parametric distribution assumption and thus giving more robustness. The resulting estimator can be called nonparametric fractionally imputation estimator. Valid variance estimation is also discussed. A limited simulation study compares the proposed methods favorably with other existing methods | - |
dc.language | English | - |
dc.publisher | INT PRESS BOSTON | - |
dc.subject | MULTIPLE-IMPUTATION | - |
dc.subject | MEAN FUNCTIONALS | - |
dc.title | Imputation methods for quantile estimation under missing at random | - |
dc.type | Article | - |
dc.identifier.wosid | 000325167700008 | - |
dc.identifier.scopusid | 2-s2.0-84885127414 | - |
dc.type.rims | ART | - |
dc.citation.volume | 6 | - |
dc.citation.issue | 3 | - |
dc.citation.beginningpage | 369 | - |
dc.citation.endingpage | 377 | - |
dc.citation.publicationname | STATISTICS AND ITS INTERFACE | - |
dc.contributor.localauthor | Kim, Jae Kwang | - |
dc.contributor.nonIdAuthor | Yang, Shu | - |
dc.contributor.nonIdAuthor | Shin, Dong Wan | - |
dc.type.journalArticle | Article | - |
dc.subject.keywordAuthor | Bahadur representation | - |
dc.subject.keywordAuthor | Estimating equation | - |
dc.subject.keywordAuthor | Fractional hot deck imputation | - |
dc.subject.keywordAuthor | Jackknife variance estimator | - |
dc.subject.keywordAuthor | Linearization method | - |
dc.subject.keywordAuthor | Nonparametric imputation | - |
dc.subject.keywordAuthor | Woodruff variance | - |
dc.subject.keywordPlus | MULTIPLE-IMPUTATION | - |
dc.subject.keywordPlus | MEAN FUNCTIONALS | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.