Focal Adhesion Assembly Induces Phenotypic Changes and Dedifferentiation in Chondrocytes

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 430
  • Download : 0
The expansion of autologous chondrocytes in vitro is used to generate sufficient populations for cell-based therapies. However, during monolayer culture, chondrocytes lose inherent characteristics and shift to fibroblast-like cells as passage number increase. Here, we investigated passage-dependent changes in cellular physiology, including cellular morphology, motility, and gene and protein expression, as well as the role of focal adhesion and cytoskeletal regulation in the dedifferentiation process. We found that the gene and protein expression levels of both the focal adhesion complex and small Rho GTPases are upregulated with increasing passage number and are closely linked to chondrocyte dedifferentiation. The inhibition of focal adhesion kinase (FAK) but not small Rho GTPases induced the loss of fibroblastic traits and the recovery of collagen type II, aggrecan, and SOX9 expression levels in dedifferentiated chondrocytes. Based on these findings, we propose a strategy to suppress chondrogenic dedifferentiation by inhibiting the identified FAK or Src pathways while maintaining the expansion capability of chondrocytes in a 2D environment. These results highlight a potential therapeutic target for the treatment of skeletal diseases and the generation of cartilage in tissue-engineering approaches. J. Cell. Physiol. 231: 1822-1831, 2016. (c) 2015 Wiley Periodicals, Inc.
Publisher
WILEY-BLACKWELL
Issue Date
2016-08
Language
English
Article Type
Article
Citation

JOURNAL OF CELLULAR PHYSIOLOGY, v.231, no.8, pp.1822 - 1831

ISSN
0021-9541
DOI
10.1002/jcp.25290
URI
http://hdl.handle.net/10203/209709
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0