Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

Cited 44 time in webofscience Cited 0 time in scopus
  • Hit : 482
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Jinkyooko
dc.contributor.authorLaw, Kincho H.ko
dc.date.accessioned2016-06-30T00:37:28Z-
dc.date.available2016-06-30T00:37:28Z-
dc.date.created2016-04-20-
dc.date.created2016-04-20-
dc.date.issued2015-09-
dc.identifier.citationENERGY CONVERSION AND MANAGEMENT, v.101, pp.295 - 316-
dc.identifier.issn0196-8904-
dc.identifier.urihttp://hdl.handle.net/10203/208693-
dc.description.abstractThis paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm. (C) 2015 Elsevier Ltd. All rights reserved-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectLAYOUT OPTIMIZATION-
dc.subjectGENETIC ALGORITHM-
dc.subjectPLACEMENT-
dc.subjectWAKE-
dc.titleCooperative wind turbine control for maximizing wind farm power using sequential convex programming-
dc.typeArticle-
dc.identifier.wosid000358271100028-
dc.identifier.scopusid2-s2.0-84933514777-
dc.type.rimsART-
dc.citation.volume101-
dc.citation.beginningpage295-
dc.citation.endingpage316-
dc.citation.publicationnameENERGY CONVERSION AND MANAGEMENT-
dc.identifier.doi10.1016/j.enconman.2015.05.031-
dc.contributor.localauthorPark, Jinkyoo-
dc.contributor.nonIdAuthorLaw, Kincho H.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPower production-
dc.subject.keywordAuthorWind farm-
dc.subject.keywordAuthorCooperative control-
dc.subject.keywordAuthorContinuous wake model-
dc.subject.keywordAuthorSequential convex programming-
dc.subject.keywordPlusLAYOUT OPTIMIZATION-
dc.subject.keywordPlusGENETIC ALGORITHM-
dc.subject.keywordPlusPLACEMENT-
dc.subject.keywordPlusWAKE-
Appears in Collection
IE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 44 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0