Delocalized Plastic Flow in Proton-Irradiated Monolithic Metallic Glasses

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 543
  • Download : 277
Creating new materials with novel properties through structural modification is the Holy Grail of materials science. The range of targetable structures for amplification of mechanical properties in metallic glasses would include types of atomic short range orders at the smallest scale through compositions or morphologies of phases in composites. Even though the usefulness of the latter approach has been successfully demonstrated in the past decades, the feasibility of the former has been incompletely proved with only marginal property improvements reported within experimentally-accessible atomic-level structural changes. Here, we report the significant enhancement of deformability in Zr-based monolithic metallic glass only through the atomic disordering by proton irradiation without altering any other structural traits. Metallic glass nanopillars that originally failed catastrophically without any notable plasticity become capable of attaining more than 30% uniaxial plastic strain accommodated by homogeneous deformation when irradiated to similar to 1 displacement per atom (DPA). We discuss the atomistic origin of this improved plasticity in terms of density and spatial distributions of icosahedral short range order influenced by irradiation.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2016-03
Language
English
Article Type
Article
Keywords

MOLECULAR-DYNAMICS; ION IRRADIATION; RANGE ORDER; DEFORMATION; STRENGTH; SIZE; REJUVENATION; TEMPERATURE; DUCTILITY; MECHANISM

Citation

SCIENTIFIC REPORTS, v.6

ISSN
2045-2322
DOI
10.1038/srep23244
URI
http://hdl.handle.net/10203/208664
Appears in Collection
ME-Journal Papers(저널논문)NE-Journal Papers(저널논문)
Files in This Item
94554.pdf(1.53 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0