Novel Quantum Criticality in Two Dimensional Topological Phase transitions

Cited 26 time in webofscience Cited 0 time in scopus
  • Hit : 213
  • Download : 218
Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various physical systems ranging from TiO2-VO2 heterostructure to organic material alpha-(BEDT-TTF)(2)I-3 under pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel quantum criticality at the phase transition by incorporating the 1/r long range Coulomb interaction. Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the anisotropic renormalization of the Coulomb interaction but also marginally modified electronic excitation. In connection with experiments, we investigate several striking effects in physical observables of our novel criticality.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2016-01
Language
English
Article Type
Article
Citation

SCIENTIFIC REPORTS, v.6, pp.19198

ISSN
2045-2322
DOI
10.1038/srep19198
URI
http://hdl.handle.net/10203/207706
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
94030.pdf(321.97 kB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 26 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0