Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood

Cited 28 time in webofscience Cited 0 time in scopus
  • Hit : 231
  • Download : 0
Red blood cells (RBCs) from the cord blood of newborn infants have distinctive functions in fetal and infant development. To systematically investigate the biophysical characteristics of individual cord RBCs in newborn infants, a comparative study was performed on RBCs from the cord blood of newborn infants and from adult mothers or nonpregnant women using optical holographic microtomography. Optical measurements of the distributions of the three-dimensional refractive indices and the dynamic membrane fluctuations of individual RBCs were used to investigate the morphological, biochemical, and mechanical properties of cord, maternal, and adult RBCs at the individual cell level. The volume and surface area of the cord RBCs were significantly larger than those of the RBCs from nonpregnant women, and the cord RBCs had more flattened shapes than that of the RBCs in adults. In addition, the hemoglobin (Hb) content in the cord RBCs from newborns was significantly higher. The Hb concentration in the cord RBCs was higher than that in the nonpregnant women or maternal RBCs, but they were within the physiological range of adults. Interestingly, the amplitudes of the dynamic membrane fluctuations in cord RBCs were comparable to those in nonpregnant women and maternal RBCs, suggesting that the deformability of cord RBCs is similar to that of healthy RBCs in adults.
Publisher
SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
Issue Date
2015-11
Language
English
Article Type
Article
Citation

JOURNAL OF BIOMEDICAL OPTICS, v.20, no.11, pp.111208

ISSN
1083-3668
DOI
10.1117/1.JBO.20.11.111208
URI
http://hdl.handle.net/10203/205550
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0