Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes

Cited 399 time in webofscience Cited 405 time in scopus
  • Hit : 322
  • Download : 0
Single-walled carbon nanotubes (SWNTs) have been previously observed to be strong antimicrobial agents, and SWNT coatings can significantly reduce biofilm formation. However, the SWNT antimicrobial mechanism is not fully understood. Previous studies on SWNT cytotoxicity have concluded that membrane stress (i.e., direct SWNT-bacteria contact resulting in membrane perturbation and the release of intracellular contents) was the primary cause of cell death. Gene expression studies have indicated oxidative stress may be active, as well. Here, it is demonstrated for the first time how SWNT electronic structure (i.e., metallic versus semiconducting) is a key factor regulating SWNT antimicrobial activity. Experiments were performed with well-characterized SWNTs of similar length and diameter but varying fraction of metallic nanotubes. Loss of Escherichia coli viability was observed to increase with an increasing fraction of metallic SWNTs. Time-dependent cytotoxicity measurements indicated that in all cases the majority of the SWNT antimicrobial action occurs shortly after (<15 min) bacteria-SWNT contact. The SWNT toxicity mechanism was investigated by in vitro SWNT-mediated oxidation of glutathione, a common intracellular thiol that serves as an antioxidant and redox state mediator. The extent of glutathione oxidation was observed to increase with increasing fraction of metallic SWNTs, indicating an elevated role of oxidative stress. Scanning electron microscopy images of E. coli in contact with the SWNTs demonstrated electronic structure-dependent morphological changes consistent with cytotoxicity and glutathione oxidation results. A three-step SWNT antimicrobial mechanism is proposed involving (i) initial SWNT-bacteria contact, (ii) perturbation of the cell membrane, and (iii) electronic structure-dependent bacterial oxidation.
Publisher
AMER CHEMICAL SOC
Issue Date
2010-09
Language
English
Article Type
Article
Citation

ACS NANO, v.4, no.9, pp.5471 - 5479

ISSN
1936-0851
DOI
10.1021/nn101558x
URI
http://hdl.handle.net/10203/200860
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 399 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0