This letter proposes channel training designs for two-hop multi-relay networks, where a source, a destination and multiple amplify-and-forward (AF) relays are all equipped with multi-antenna, based on mean square error (MSE) and signal-to-noise ratio (SNR) criteria with taking into account spatial fading correlation between multiple-input multiple-output (MIMO) channel elements. The minimum MSE and maximum SNR channel estimators are initially derived and, then, optimal structures on source training signal and relay matrices are determined. An iterative and a closed-form power allocation solutions are proposed for both channel estimators. Simulation results show that the proposed schemes outperform the conventional schemes.