A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries

Cited 206 time in webofscience Cited 182 time in scopus
  • Hit : 1148
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Hongkyungko
dc.contributor.authorLee, Dong-Jinko
dc.contributor.authorKim, Yunjungko
dc.contributor.authorPark, Jung-Kiko
dc.contributor.authorKim, Hee-Takko
dc.date.accessioned2015-06-25T06:22:28Z-
dc.date.available2015-06-25T06:22:28Z-
dc.date.created2015-06-16-
dc.date.created2015-06-16-
dc.date.created2015-06-16-
dc.date.issued2015-06-
dc.identifier.citationJOURNAL OF POWER SOURCES, v.284, pp.103 - 108-
dc.identifier.issn0378-7753-
dc.identifier.urihttp://hdl.handle.net/10203/199047-
dc.description.abstractMetallic lithium is the most promising negative electrode for high-energy rechargeable batteries due to its extremely high specific capacity and its extremely low redox potential. However, the low cycle efficiency and lithium dendrite formation during the charge/discharge processes consistently hinder its practical application. In this report, we present a stabilized Li electrode on which a Li+ ion conductive inorganic/organic composite protective layer (CPL) is coated. With the introduction of the CPL, the Li dendrite growth and electrolyte decomposition are effectively suppressed; consequently, stable Li plating/stripping at high current densities up to 10 mA cm(-2) is possible. Nanoindentation tests demonstrate that the shear modulus of the CPL at narrow indentations is 1.8 times higher than that of the Li metal, which provides a theoretical understanding for its efficacy. Moreover, the LiCoO2/Li cell incorporating CPL exhibits excellent cycling stability up to 400 cycles at 1 mA cm(-2) (1 C-rate), which demonstrates practical applicability in Li ion batteries through replacing the graphite anode with a CPL-coated Li metal anode.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titleA simple composite protective layer coating that enhances the cycling stability of lithium metal batteries-
dc.typeArticle-
dc.identifier.wosid000354140700014-
dc.identifier.scopusid2-s2.0-84924234931-
dc.type.rimsART-
dc.citation.volume284-
dc.citation.beginningpage103-
dc.citation.endingpage108-
dc.citation.publicationnameJOURNAL OF POWER SOURCES-
dc.identifier.doi10.1016/j.jpowsour.2015.03.004-
dc.contributor.localauthorPark, Jung-Ki-
dc.contributor.localauthorKim, Hee-Tak-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorComposite protective layer-
dc.subject.keywordAuthorHigh current density-
dc.subject.keywordAuthorLithium ion battery-
dc.subject.keywordAuthorLithium metal-
dc.subject.keywordAuthorLithium plating-
dc.subject.keywordPlusSECONDARY BATTERIES-
dc.subject.keywordPlusLI METAL-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusINTERFACES-
dc.subject.keywordPlusDEPOSITION-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 206 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0