Time-domain stabilization of carrier-envelope phase in femtosecond light pulses

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 316
  • Download : 345
DC FieldValueLanguage
dc.contributor.authorKIM, Young-Jinko
dc.contributor.authorCoddington, Ianko
dc.contributor.authorSwann, William C.ko
dc.contributor.authorNewbury, Nathan R.ko
dc.contributor.authorLee, Joohyungko
dc.contributor.authorKim, Seungchulko
dc.contributor.authorKim, Seung-Wooko
dc.date.accessioned2015-01-27T02:03:22Z-
dc.date.available2015-01-27T02:03:22Z-
dc.date.created2014-07-07-
dc.date.created2014-07-07-
dc.date.created2014-07-07-
dc.date.created2014-07-07-
dc.date.issued2014-05-
dc.identifier.citationOPTICS EXPRESS, v.22, no.10, pp.11788 - 11796-
dc.identifier.issn1094-4087-
dc.identifier.urihttp://hdl.handle.net/10203/193051-
dc.description.abstractWe report a time-domain method of stabilizing the carrier-envelope phase (CEP) of femtosecond pulses. Temporal variations of the pulse envelope and the carrier electric-field phase were separately detected with the aid of intensity cross-correlation and interferometric cross-correlation. These detected signals were used to stabilize the CEP; the resulting 50-fold improvement in the fractional stability of the carrier-envelop-offset frequency was evaluated as 1.2 x 10(-11) at 0.1 second averaging periods and 1.7 x 10(-9) at 80 seconds, corresponding to a carrier envelope phase noise of 75 microradians and 10 milliradians, respectively. This method can be realized with a low pulse energy of similar to 10 pJ and does not require subsequent power amplification or spectral broadening. The high efficiency and short-term stability of this method can facilitate the use of femtosecond lasers in the field of industrial surface measurements, telecommunications, and space sciences.-
dc.languageEnglish-
dc.publisherOPTICAL SOC AMER-
dc.titleTime-domain stabilization of carrier-envelope phase in femtosecond light pulses-
dc.typeArticle-
dc.identifier.wosid000336957700041-
dc.identifier.scopusid2-s2.0-84901264908-
dc.type.rimsART-
dc.citation.volume22-
dc.citation.issue10-
dc.citation.beginningpage11788-
dc.citation.endingpage11796-
dc.citation.publicationnameOPTICS EXPRESS-
dc.identifier.doi10.1364/OE.22.011788-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorKIM, Young-Jin-
dc.contributor.localauthorKim, Seung-Woo-
dc.contributor.nonIdAuthorCoddington, Ian-
dc.contributor.nonIdAuthorSwann, William C.-
dc.contributor.nonIdAuthorNewbury, Nathan R.-
dc.contributor.nonIdAuthorLee, Joohyung-
dc.contributor.nonIdAuthorKim, Seungchul-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMODE-LOCKED LASERS-
dc.subject.keywordPlusFREQUENCY-COMB-
dc.subject.keywordPlusTIMING JITTER-
dc.subject.keywordPlusFIBER-
dc.subject.keywordPlusSYNCHRONIZATION-
dc.subject.keywordPlusMETROLOGY-
dc.subject.keywordPlusOFFSET-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0