Full-Field Subwavelength Imaging Using a Scattering Superlens

Cited 77 time in webofscience Cited 84 time in scopus
  • Hit : 871
  • Download : 152
DC FieldValueLanguage
dc.contributor.authorPark, Chunghyunko
dc.contributor.authorPark, Jung-Hoonko
dc.contributor.authorRodriguez, Christopheko
dc.contributor.authorYu, HyeonSeungko
dc.contributor.authorKim, Minkwanko
dc.contributor.authorJin, Kyoungsukko
dc.contributor.authorHan, Seungyongko
dc.contributor.authorShin, Jonghwako
dc.contributor.authorKo, Seung Hwanko
dc.contributor.authorNam, Ki Taeko
dc.contributor.authorLee, Yong-Heeko
dc.contributor.authorCho, Yong-Hoonko
dc.contributor.authorPark, Yong-Keunko
dc.date.accessioned2014-11-12T08:58:31Z-
dc.date.available2014-11-12T08:58:31Z-
dc.date.created2014-10-02-
dc.date.created2014-10-02-
dc.date.created2014-10-02-
dc.date.created2014-10-02-
dc.date.issued2014-09-
dc.identifier.citationPHYSICAL REVIEW LETTERS, v.113, no.11, pp.113901-
dc.identifier.issn0031-9007-
dc.identifier.urihttp://hdl.handle.net/10203/191085-
dc.description.abstractLight-matter interaction gives optical microscopes tremendous versatility compared with other imaging methods such as electron microscopes, scanning probe microscopes, or x-ray scattering where there are various limitations on sample preparation and where the methods are inapplicable to bioimaging with live cells. However, this comes at the expense of a limited resolution due to the diffraction limit. Here, we demonstrate a novel method utilizing elastic scattering from disordered nanoparticles to achieve subdiffraction limited imaging. The measured far-field speckle fields can be used to reconstruct the subwavelength details of the target by time reversal, which allows full-field dynamic super-resolution imaging. The fabrication of the scattering superlens is extremely simple and the method has no restrictions on the wavelength of light that is used.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.titleFull-Field Subwavelength Imaging Using a Scattering Superlens-
dc.typeArticle-
dc.identifier.wosid000345970800003-
dc.identifier.scopusid2-s2.0-84913542065-
dc.type.rimsART-
dc.citation.volume113-
dc.citation.issue11-
dc.citation.beginningpage113901-
dc.citation.publicationnamePHYSICAL REVIEW LETTERS-
dc.identifier.doi10.1103/PhysRevLett.113.113901-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorShin, Jonghwa-
dc.contributor.localauthorLee, Yong-Hee-
dc.contributor.localauthorCho, Yong-Hoon-
dc.contributor.localauthorPark, Yong-Keun-
dc.contributor.nonIdAuthorJin, Kyoungsuk-
dc.contributor.nonIdAuthorHan, Seungyong-
dc.contributor.nonIdAuthorKo, Seung Hwan-
dc.contributor.nonIdAuthorNam, Ki Tae-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSTRUCTURED-ILLUMINATION MICROSCOPY-
dc.subject.keywordPlusOPTICAL-PHASE CONJUGATION-
dc.subject.keywordPlusRANDOM NANOPARTICLES-
dc.subject.keywordPlusDIFFRACTION-LIMIT-
dc.subject.keywordPlusTIME-REVERSAL-
dc.subject.keywordPlusTURBID MEDIA-
dc.subject.keywordPlusRESOLUTION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 77 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0