Dual Modulation of the Mitochondrial Permeability Transition Pore and Redox Signaling Synergistically Promotes Cardiomyocyte Differentiation From Pluripotent Stem Cells

Cited 48 time in webofscience Cited 44 time in scopus
  • Hit : 838
  • Download : 683
DC FieldValueLanguage
dc.contributor.authorCho, Sung Wooko
dc.contributor.authorPark, Jin-Sungko
dc.contributor.authorHeo, Hye Jinko
dc.contributor.authorPark, Sang-Wookko
dc.contributor.authorSong, Sukhyunko
dc.contributor.authorKim, Injuneko
dc.contributor.authorHan, Yong-Mahnko
dc.contributor.authorYamashita, Jun K.ko
dc.contributor.authorYoum, Jae Boumko
dc.contributor.authorHan, Jinko
dc.contributor.authorKoh, Gou Youngko
dc.date.accessioned2014-09-01T07:40:20Z-
dc.date.available2014-09-01T07:40:20Z-
dc.date.created2014-07-07-
dc.date.created2014-07-07-
dc.date.created2014-07-07-
dc.date.issued2014-04-
dc.identifier.citationJOURNAL OF THE AMERICAN HEART ASSOCIATION, v.3, no.2-
dc.identifier.issn2047-9980-
dc.identifier.urihttp://hdl.handle.net/10203/189308-
dc.description.abstractBackground-Cardiomyocytes that differentiate from pluripotent stem cells (PSCs) provide a crucial cellular resource for cardiac regeneration. The mechanisms of mitochondrial metabolic and redox regulation for efficient cardiomyocyte differentiation are, however, still poorly understood. Here, we show that inhibition of the mitochondrial permeability transition pore (mPTP) by Cyclosporin A (CsA) promotes cardiomyocyte differentiation from PSCs. Methods and Results-We induced cardiomyocyte differentiation from mouse and human PSCs and examined the effect of CsA on the differentiation process. The cardiomyogenic effect of CsA mainly resulted from mPTP inhibition rather than from calcineurin inhibition. The mPTP inhibitor NIM811, which does not have an inhibitory effect on calcineurin, promoted cardiomyocyte differentiation as much as CsA did, but calcineurin inhibitor FK506 only slightly increased cardiomyocyte differentiation. CsA-treated cells showed an increase in mitochondrial calcium, mitochondrial membrane potential, oxygen consumption rate, ATP level, and expression of genes related to mitochondrial function. Furthermore, inhibition of mitochondrial oxidative metabolism reduced the cardiomyogenic effect of CsA while antioxidant treatment augmented the cardiomyogenic effect of CsA. Conclusions-Our data show that mPTP inhibition by CsA alters mitochondrial oxidative metabolism and redox signaling, which leads to differentiation of functional cardiomyocytes from PSCs.-
dc.languageEnglish-
dc.publisherWILEY-BLACKWELL-
dc.subjectPHYSIOLOGICAL ROLES-
dc.subjectENERGY-METABOLISM-
dc.subjectCARDIAC MYOCYTES-
dc.subjectMOUSE-
dc.subjectHEART-
dc.subjectPROGENITORS-
dc.subjectTHERAPY-
dc.subjectCARDIOMYOGENESIS-
dc.subjectPURIFICATION-
dc.subjectREGENERATION-
dc.titleDual Modulation of the Mitochondrial Permeability Transition Pore and Redox Signaling Synergistically Promotes Cardiomyocyte Differentiation From Pluripotent Stem Cells-
dc.typeArticle-
dc.identifier.wosid000336798000005-
dc.identifier.scopusid2-s2.0-84904627477-
dc.type.rimsART-
dc.citation.volume3-
dc.citation.issue2-
dc.citation.publicationnameJOURNAL OF THE AMERICAN HEART ASSOCIATION-
dc.identifier.doi10.1161/JAHA.113.000693-
dc.contributor.localauthorKim, Injune-
dc.contributor.localauthorHan, Yong-Mahn-
dc.contributor.localauthorKoh, Gou Young-
dc.contributor.nonIdAuthorHeo, Hye Jin-
dc.contributor.nonIdAuthorSong, Sukhyun-
dc.contributor.nonIdAuthorYamashita, Jun K.-
dc.contributor.nonIdAuthorYoum, Jae Boum-
dc.contributor.nonIdAuthorHan, Jin-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormetabolism-
dc.subject.keywordAuthormitochondria-
dc.subject.keywordAuthormyocytes-
dc.subject.keywordAuthorredox-
dc.subject.keywordAuthorstem cells-
dc.subject.keywordAuthormetabolism-
dc.subject.keywordAuthormitochondria-
dc.subject.keywordAuthormyocytes-
dc.subject.keywordAuthorredox-
dc.subject.keywordAuthorstem cells-
dc.subject.keywordPlusPHYSIOLOGICAL ROLES-
dc.subject.keywordPlusENERGY-METABOLISM-
dc.subject.keywordPlusCARDIAC MYOCYTES-
dc.subject.keywordPlusMOUSE-
dc.subject.keywordPlusHEART-
dc.subject.keywordPlusPROGENITORS-
dc.subject.keywordPlusTHERAPY-
dc.subject.keywordPlusCARDIOMYOGENESIS-
dc.subject.keywordPlusPURIFICATION-
dc.subject.keywordPlusREGENERATION-
dc.subject.keywordPlusPHYSIOLOGICAL ROLES-
dc.subject.keywordPlusENERGY-METABOLISM-
dc.subject.keywordPlusCARDIAC MYOCYTES-
dc.subject.keywordPlusMOUSE-
dc.subject.keywordPlusHEART-
dc.subject.keywordPlusPROGENITORS-
dc.subject.keywordPlusTHERAPY-
dc.subject.keywordPlusCARDIOMYOGENESIS-
dc.subject.keywordPlusPURIFICATION-
dc.subject.keywordPlusREGENERATION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 48 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0