XMage is introduced in this paper as a method for partial similarity searching in image databases. Region-based image retrieval is a method of retrieving partially similar images. It has been proposed as a way to accurately process queries in an image database. In region-based image retrieval, region matching is indispensable for computing the partial similarity between two images because the query processing is based upon regions instead of the entire image. A naive method of region matching is a sequential comparison between regions, which causes severe overhead and deteriorates the performance of query processing. In this paper, a new image contents representation, called Condensed eXtended Histogram (CXHistogram), is presented in conjunction with a well-defined distance function CXSim() on the CX-Histogram. The CXSim() is a new image-to-image similarity measure to compute the partial similarity between two images. It achieves the effect of comparing regions of two images by simply comparing the two images. The CXSim() reduces query space by pruning irrelevant images, and it is used as a filtering function before sequential scanning. Extensive experiments were performed on real image data to evaluate Wage. It provides a significant pruning of irrelevant images with no false dismissals. As a consequence, it achieves up to 5.9-fold speed-up in search over the R*-tree search followed by sequential scanning. (c) 2005 Elsevier Ltd. All rights reserved.