A computationally efficient technique for feature extraction with null-space based linear discriminant analysis영 공간 기반 선형 판별 분석을 쓰는 특징 추출에서의 계산 효율적 기법

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 601
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorSong, Iick-Ho-
dc.contributor.advisor송익호-
dc.contributor.authorHou, Yu-Xi-
dc.contributor.authorHou Yuxi-
dc.date.accessioned2013-09-11T05:14:21Z-
dc.date.available2013-09-11T05:14:21Z-
dc.date.issued2012-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=511887&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/180168-
dc.description학위논문(박사) - 한국과학기술원 : 전기및전자공학과, 2012.8, [ vi, 55 p. ]-
dc.description.abstractThe linear discriminant analysis (LDA), aiming at maximizing the ratio of the betweenclass distance to the within-class distance of data, is one of the most fundamental and powerful feature extraction methods. The LDA has been successfully applied in many applications such as facial recognition, text recognition, and image retrieval. However, due to the singularity of the within-class scatter, the LDA becomes ill-posed for small sample size (SSS) problems where the dimension of data is larger than the number of data. To extend the applicability of LDA in SSS problems, the null space-based LDA (NLDA) was proposed as an extension of the LDA. The NLDA has been shown in the literature to provide a good discriminant performance for SSS problems: Yet, as the original scheme for the feature extractor (FE) of the NLDA suffers from a complexity burden, a number of modified schemes based on QR factorization and eigen-decomposition have since been proposed for complexity reduction. In this dissertation, by transforming the problem of finding the FE of the NLDA into a linear equation problem, a novel scheme is derived, offering a further reduction of the complexity.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectComplexity-
dc.subjectFeature extractor-
dc.subjectLinear equation problem-
dc.subjectNull space based linear discriminant analysis-
dc.subject복잡도-
dc.subject특징 추출기-
dc.subject선형 방정식 문제-
dc.subject영 공간 기반 선형 판별 분석-
dc.subject작은 표본 크기-
dc.subjectSmall sample size-
dc.titleA computationally efficient technique for feature extraction with null-space based linear discriminant analysis-
dc.title.alternative영 공간 기반 선형 판별 분석을 쓰는 특징 추출에서의 계산 효율적 기법-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN511887/325007 -
dc.description.department한국과학기술원 : 전기및전자공학과, -
dc.identifier.uid020054537-
dc.contributor.localauthorSong, Iick-Ho-
dc.contributor.localauthor송익호-
Appears in Collection
EE-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0