Multifunctionality and control of the crumpling and unfolding of large-area graphene

Cited 696 time in webofscience Cited 685 time in scopus
  • Hit : 531
  • Download : 0
Crumpled graphene films are widely used, for instance in electronics(1), energy storage(2,3), composites(4,5) and biomedicine(6). Although it is known that the degree of crumpling affects graphene's properties and the performance of graphene-based devices and materials(3'5'7), the controlled folding and unfolding of crumpled graphene films has not been demonstrated. Here we report an approach to reversibly control the crumpling and unfolding of large-area graphene sheets. We show with experiments, atomistic simulations and theory that, by harnessing the mechanical instabilities of graphene adhered on a biaxially pre-stretched polymer substrate and by controlling the relaxation of the pre-strains in a particular order, graphene films can be crumpled into tailored self-organized hierarchical structures that mimic superhydrophobic leaves. The approach enables us to fabricate large-area conductive coatings and electrodes showing superhydrophobicity, high transparency, and tunable wettability and transmittance. We also demonstrate that crumpled graphene-polymer laminates can be used as artificial-muscle actuators.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2013-04
Language
English
Article Type
Article
Citation

NATURE MATERIALS, v.12, no.4, pp.321 - 325

ISSN
1476-1122
DOI
10.1038/NMAT3542
URI
http://hdl.handle.net/10203/174358
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 696 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0