Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation

Cited 176 time in webofscience Cited 0 time in scopus
  • Hit : 564
  • Download : 268
DC FieldValueLanguage
dc.contributor.authorKu, Sook-Heeko
dc.contributor.authorLee, Sahng-Hako
dc.contributor.authorPark, Chan-Beumko
dc.date.accessioned2013-03-13T02:48:36Z-
dc.date.available2013-03-13T02:48:36Z-
dc.date.created2012-10-09-
dc.date.created2012-10-09-
dc.date.issued2012-09-
dc.identifier.citationBIOMATERIALS, v.33, no.26, pp.6098 - 6104-
dc.identifier.issn0142-9612-
dc.identifier.urihttp://hdl.handle.net/10203/104285-
dc.description.abstractThe interactions between cells and materials play critical roles in the success of new scaffolds for tissue engineering, since chemical and physical properties of biomaterials regulate cell adhesion, proliferation, migration, and differentiation. We have developed nanofibrous substrates that possess both topographical cues and electroactivity. The nanofiber scaffolds were fabricated through the electrospinning of polycaprolactone (PCL, a biodegradable polymer) and polyaniline (PANi, a conducting polymer) blends. We investigated the ways in which those properties influenced myoblast behaviors. Neither nanofiber alignment nor PANi concentration influenced cell growth and proliferation, but cell morphology changed significantly from multipolar to bipolar with the anisotropy of nanofibers. According to our analyses of myosin heavy chain expression, multinucleate myotube formation, and the expression of differentiation-specific genes (myogenin, troponin T, MHC), the differentiation of myoblasts on PCL/PANi nanofibers was strongly dependent on both nanofiber alignment and PANi concentration. Our results suggest that topographical cues and the electroactivity of nanofibers synergistically stimulate muscle cell differentiation to make PCL/PANi nanofibers a suitable scaffold material for skeletal tissue engineering. (C) 2012 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectTISSUE ENGINEERING APPLICATIONS-
dc.subjectPOLYANILINE NANOFIBER-
dc.subjectBIOMIMETIC MATERIALS-
dc.subjectCONDUCTING POLYMERS-
dc.subjectSTIMULATION-
dc.subjectMYOGENESIS-
dc.subjectFUSION-
dc.titleSynergic effects of nanofiber alignment and electroactivity on myoblast differentiation-
dc.typeArticle-
dc.identifier.wosid000306720400012-
dc.identifier.scopusid2-s2.0-84862864809-
dc.type.rimsART-
dc.citation.volume33-
dc.citation.issue26-
dc.citation.beginningpage6098-
dc.citation.endingpage6104-
dc.citation.publicationnameBIOMATERIALS-
dc.identifier.doi10.1016/j.biomaterials.2012.05.018-
dc.contributor.localauthorPark, Chan-Beum-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorTissue engineering-
dc.subject.keywordAuthorMyotube formation-
dc.subject.keywordAuthorNanofiber alignment-
dc.subject.keywordAuthorElectrospinning-
dc.subject.keywordAuthorConducting polymer-
dc.subject.keywordPlusTISSUE ENGINEERING APPLICATIONS-
dc.subject.keywordPlusPOLYANILINE NANOFIBER-
dc.subject.keywordPlusBIOMIMETIC MATERIALS-
dc.subject.keywordPlusCONDUCTING POLYMERS-
dc.subject.keywordPlusSTIMULATION-
dc.subject.keywordPlusMYOGENESIS-
dc.subject.keywordPlusFUSION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 176 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0