HADI: Mining Radii of Large Graphs

Cited 52 time in webofscience Cited 0 time in scopus
  • Hit : 593
  • Download : 0
Given large, multimillion-node graphs (e.g., Facebook, Web-crawls, etc.), how do they evolve over time? How are they connected? What are the central nodes and the outliers? In this article we define the Radius plot of a graph and show how it can answer these questions. However, computing the Radius plot is prohibitively expensive for graphs reaching the planetary scale. There are two major contributions in this article: (a) We propose HADI (HAdoop DIameter and radii estimator), a carefully designed and fine-tuned algorithm to compute the radii and the diameter of massive graphs, that runs on the top of the HADOOP/MAPREDUCE system, with excellent scale-up on the number of available machines (b) We run HADI on several real world datasets including YahooWeb (6B edges, 1/8 of a Terabyte), one of the largest public graphs ever analyzed. Thanks to HADI, we report fascinating patterns on large networks, like the surprisingly small effective diameter, the multimodal/bimodal shape of the Radius plot, and its palindrome motion over time.
Publisher
ASSOC COMPUTING MACHINERY
Issue Date
2011-02
Language
English
Article Type
Article
Citation

ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, v.5, no.2

ISSN
1556-4681
DOI
10.1145/1921632.1921634
URI
http://hdl.handle.net/10203/103550
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 52 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0