Exploring In-Situ Sensing Irregularity in Wireless Sensor Networks

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 377
  • Download : 0
The circular sensing model has been widely used to estimate performance of sensing applications in existing analyses and simulations. While this model provides valuable high-level guidelines, the quantitative results obtained may not reflect the true performance of these applications, due to the sensing irregularity introduced by existence of obstacles in real deployment areas and insufficient hardware calibration. In this paper, we design and implement two Sensing Area Modeling (SAM) techniques useful in the real world. They complement each other in the design space. Physical Sensing Area Modeling (P-SAM) provides accurate physical sensing area for individual nodes using controlled or monitored events, while Virtual Sensing Area Modeling (V-SAM) provides continuous sensing similarity between nodes using natural events in an environment. With these two models, we pioneer an investigation of the impact of sensing irregularity on application performance, such as coverage scheduling. We evaluate SAM extensively in real-world settings, using testbeds consisting of 14 XSM motes. To study the performance at scale, we also provide an extensive 1,400-node simulation. Evaluation results reveal several serious issues concerning circular models and demonstrate significant improvements in several applications when SAM is used instead.
Publisher
IEEE COMPUTER SOC
Issue Date
2010-04
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, v.21, no.4, pp.547 - 561

ISSN
1045-9219
DOI
10.1109/TPDS.2009.92
URI
http://hdl.handle.net/10203/102756
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0