Three-dimensional PIV measurement of flow around an arbitrarily moving body

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 470
  • Download : 0
A three-dimensional (3D) particle image velocimetry measurement technique capable of simultaneously monitoring 3D fluid flows and the structure of an arbitrarily moving surface embedded in the flow was proposed with a heavy emphasis on image processing methods. The costs associated with the experimental apparatus were reduced by recording the surface and the trace particles at one image plane without the use of additional cameras or illumination devices. An optimal exposure time for surface and particle imaging was identified using red fluorescent tracer particles in conjunction with a long-pass glass filter. The particle image and surface image were then separated using an image separation process that relied on the feature scaling differences between the particles and the surface texture. A feature detection process and a matching process facilitated estimation of the 3D surface points, and the 3D surface structure was modeled by Delaunay triangulation. The particle volume reconstruction algorithm constrained the voxels inside the surface structure to zero values to minimize ghost particle generation. Volume self-calibration was employed to improve the reconstruction quality and the triangulation accuracy. To conserve computing resources in the presence of numerous zero voxels, the MLOS-SMART reconstruction and the direct non-zero voxel cross-correlation method were applied. Three-dimensional experiments that modeled the flows around an eccentric rotating cylinder and a flapping flag were conducted to validate the present technique.
Publisher
SPRINGER
Issue Date
2012-10
Language
English
Article Type
Article
Keywords

PARTICLE IMAGE VELOCIMETRY; CALIBRATION; TRIANGULATION; SYSTEM

Citation

EXPERIMENTS IN FLUIDS, v.53, no.4, pp.1057 - 1071

ISSN
0723-4864
DOI
10.1007/s00348-012-1350-0
URI
http://hdl.handle.net/10203/102724
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0