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Abstract. The object tracking method using the scale-invariant feature
transform �SIFT� is applicable to rotated or scaled targets, and also
maintains good performance in occluded or intensity-changed images.
However, the SIFT algorithm has high computational complexity. In ad-
dition, the template size has to be sufficiently large to extract enough
features to match. This paper proposes a scale-invariant object tracking
method using strong corner points in the scale domain. The proposed
method makes it possible to track a smaller object than the SIFT tracker
by extracting relatively more features from a target image. In the pro-
posed method, strong features of the template image, which correspond
to strong corner points in the scale domain, are selected. The strong
features of the template image are then matched with all features of the
target image. The matched features are used to find relations between
the template and target images. In experimental results, the proposed
method shows better performance than the existing SIFT tracker. © 2009
Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3070665�

Subject terms: feature matching; object tracking; scale-invariant feature trans-
form �SIFT�; scale space.
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Introduction

bject tracking methods are widely used for intelligent vi-
ual surveillance systems, perceptual user interfaces, and
bject-based video compression. The template matching
ethod is a procedure to find the highest similarity between
template image and a target image. The sum of absolute

ifferences, sum of squared differences, and correlation are
sually used as measures of similarity.1–3 The correlation
rovides good accuracy and reliability in template match-
ng, but involves huge computational costs. The kernel-
ased mean shift method is also used for template
atching.4,5 It generates a histogram with pixel and posi-

ion information and matches the given template and a tar-
et image. All these template matching methods entail
ome problems when the template or target images have
cclusion or noise. Furthermore, if an object is geometri-
ally deformed to a high degree, and thus the object’s shape
n the template is considerably different from that in the
arget image, it is difficult to match the two images.

There are also many feature-based tracking methods in-

091-3286/2009/$25.00 © 2009 SPIE
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cluding the Kanade-Lucas-Tomasi �KLT� tracker6 and the
scale-invariant feature transform �SIFT� tracker.7 The SIFT
tracker has a wider tracking range than the KLT. In addi-
tion, the KLT tracker is relatively sensitive to variation of
intensity in the image, whereas the SIFT tracker is robust to
this disturbance. Therefore, the SIFT tracker is preferable
when the object size varies or a given image has noise. The
SIFT tracker is also useful in tracking physical movements
like hand gestures8 and head motions.9

The SIFT algorithm has also been applied to robot
vision.10 However, it involves a heavy computational cost
and also requires that the object in the image be of moder-
ate size for successful tracking. Therefore, some research-
ers have tried to reduce the computational complexity of
the SIFT algorithm.11,12 In particular, Liefhebber and Sijs10

searched for SIFT features just within a region of interest
�ROI� designated within the object area, and adjusted the
image size for controlling the number of features. This
method can reduce the image size, computational complex-
ity, and computing time. In this paper, we also reduce the
computational cost of the SIFT tracker and make possible
the tracking of even small objects.
January 2009/Vol. 48�1�1
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First, we review the SIFT algorithm in Sec. 2. The pro-
osed object tracking method is described in Sec. 3. Sec-
ion 4 presents experimental results with IR and CCD im-
ge sequences. Finally, conclusions are given in Sec. 5.

Scale-Invariant Feature Transform
he SIFT algorithm7 generates scale-space images in a
aussian scale space.13,14 The scale space contains images
f various resolutions, and smoothed images in the Gauss-
an scale space can replace the original images. Starting
rom an original image I, smoothed images I� are succes-
ively generated by applying Gaussian filtering as follows:

� = G� � I , �1�

here � represents the linear convolution operation and G�

s a Gaussian function defined as

� =
1

2��2 exp� x2 + y2

2�2 � . �2�

ere I� is equivalent to the resized image I1/� obtained
rom the original image by a resizing ratio of
1 /��� �1 /��. Initially � is set to 0.5, so that the corre-
ponding smoothed image is interpolated doubly from the
riginal image.

After generating every smoothed image in the scale do-
ain �, images in the scale space have three dimensions,

orresponding to the image domain �x and y axes� and scale
omain. The size of the i ’ th scale image is double that of
he �i+n�th scale image, where the scale parameter is given
s follows:

= 2i/n. �3�

n order to reduce the computational complexity for gen-
ration of the entire scale space, every n ’ th scale image is
ownsampled by a factor of two. In this case, n images
aving the same image size are said to be in the same
ctave. Figure 1 shows the imaginary scale space and the
eal scale space. Every image I1/� of the imaginary scale
pace has a different size according to the resizing ratio,
nd the image of the real scale space is smoothed by Gauss-
an filtering rather than resizing by a noninteger �.

To allocate a dominant point in a bandpassed signal to a
eature in a corresponding scale domain, Laplacian images
re computed in the scale space as follows:

�2I� =
�I�

��
�

Ik� − I�

k� − �
. �4�

his shows that the Laplacian function can be replaced
ith the difference of Gaussians �DoG� function normal-

zed by �k−1��2. The extremum pixel having the maximum
r minimum value is then extracted from the DoG images,
here it is compared with the adjacent 26 pixels in image

nd scale domain. Therefore, two adjacent DoG images dif-
ering only in the value of � should have the same size for
he comparison. The extremum point is estimated with
oating-point accuracy on the image and scale axes.

Finally, each feature descriptor is defined at the extre-
um point. For scale invariance, the descriptor includes
ptical Engineering 017204-
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information within a circle of radius �. This information
includes the orientation and magnitude of the gradient of
every pixel within that circle. For rotational invariance, the
descriptor collects information and finds the dominant ori-
entation of the gradient whose magnitude is the largest, and
then rotates every pixel within its circle in order to place
the dominant orientation at zero degrees.

3 The Proposed Object Tracking Method
The proposed object tracking method performs feature-
based matching and updates the aiming point and template
at every sequential frame, as shown in Fig. 2. In this paper,
an object area in a previous frame is called a template im-
age, and its next frame is called a target image. The aiming
point and template are manually defined in the first image
by the user. Scale-invariant features are then extracted from
the target image and matched with features of the template
image. The number of features of the template image is
fixed to 15, and thus 15 features among the features of the
target image can be matched with those of the template
image. In the next step, an optimum relation between the
template and the target image is found using the 15
matched features, and the distances of the matched features
for the optimum relation are computed. We select six
smallest-distance features among the 15 matched features
and nine features of the target image corresponding to
strong corners in the scale domain; these features then be-
come new template features for tracking of the next frame.
The final step in the loop is to update the aiming point and
template with the optimum relation; this is used to continu-
ously track the next frame.

Fig. 1 Imaginary scale space consisting of I1/� resized by
�1/��� �1/��, and real scale space consisting of Gaussian
smoothed images I� with scale parameter �=2i/n for n=3.
January 2009/Vol. 48�1�2
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Fig. 2 Flow chart illustrating the proposed tracking procedure.
ptical Engineering January 2009/Vol. 48�1�017204-3
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.1 Scale-Invariant Feature Extraction
sing the SIFT algorithm,7 the scale- and rotation-invariant

eatures can be extracted. Even if there are affine, view-
oint, and illumination changes in a given image, it is pos-
ible to match the given image with the changed image by
xtracting and matching the SIFT features from the two
mages. However, the SIFT algorithm has some limitations,
uch as high computational complexity and ability to cope
nly with moderate size of the objects. In order to over-
ome these drawbacks, we propose a new method, whereby
he number of features is increased and strong features
mong them, which correspond to strong corners in the
cale space, are selected. In addition, we restrict the range
f the scale space, thereby reducing the computational
omplexity. The selection of strong corners in the scale
pace among numerous features can also reduce the com-
utational complexity for one-to-one correspondence
atching. Since this approach guarantees sufficient fea-

ures, it can also be successfully applied to small-object
racking.

While the SIFT algorithm employs the extremum in 3-D
f both the image and the scale space, the proposed method
xtracts the extremum only from the image domain at each
cale domain. Therefore, the proposed method does not
eed the two adjacent DoG images for one comparison. We
ompare numbers of features extracted by the SIFT algo-
ithm and the proposed method from six test images, which
re familiar to image-processing experts: “Airplane,” “Ba-
oon,” “Cameraman,” “Lena,” “Peppers,” and “Sailboat”
hown in Fig. 3. The test results are summarized in Table 1.

hile the SIFT algorithm uses three different octaves each
f which has three DoG images, the proposed method uses
nly one octave with three DoG images, assuming that the
bject size can vary by less than a factor of 2 between two
djacent frames. In practice, the SIFT algorithm generates
8 Gaussian smoothed images for three octaves. However,
he proposed method uses only four Gaussian smoothed
mages, generating three DoG images. This reduces the
omputational complexity for generating the scale space.

ig. 3 Test images for comparing numbers of features extracted by
he SIFT algorithm and the proposed method: �a� “Airplane”
256�256�, �b� “Baboon” �256�256�, �c� “Cameraman”
256�256�, �d� “Lena” �256�256�, �e� “Peppers” �250�230�, and
f� “Sailboat” �256�256�.
ptical Engineering 017204-
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Furthermore, the proposed method extracts more features
than the SIFT algorithm. As shown in Table 1, when the
template size is 20�20, the SIFT algorithm cannot extract
sufficient features for tracking the “Airplane,” “Baboon,”
and “Cameraman” images. On the other hand, the proposed
method can extract sufficient features from all images.

In order to reduce the computational complexity, the
proposed method selects good matching features among all
features. Strong corners in every scale domain can be a
good criterion to select good matching features, since they
are invariant to scale. A corner can be estimated by a
Hessian matrix15 defined as follows:

H = �Dxx Dxy

Dxy Dyy
� , �5�

where Dab is the second derivative of the scale space image
along the a and b directions. The eigenvalues of H are
proportional to the principal curvatures. The trace and de-
terminant of H equal the sum and product of the eigenval-
ues, respectively, as follows:

Tr�H� = Dxx + Dyy = � + � ,

Det�H� = DxxDyy − �Dxy�2 = �� , �6�

where � and � are the larger and the smaller eigenvalue,
respectively. The following corner coefficient then repre-
sents how strong the corner is in scale space:

Tr�H�2

Det�H�
=

�� + ��2

��
. �7�

The corner coefficient is at a minimum when the two ei-
genvalues are equal, and it increases as � /�, the ratio of
eigenvalues, increases. A point at which the two curvatures
are both dominant is considered as a corner. Therefore, the
smaller the corner coefficient is, the stronger the corner is.

Table 1 Numbers of features extracted from six images by the SIFT
algorithm and the proposed method for full template and 20�20
template.

Size
Full

template size
20�20

template size

Image Width Height SIFT Proposed SIFT Proposed

“Airplane” 256 256 2138 7619 4 15

“Baboon” 256 256 2411 9687 8 62

“Cameraman” 256 256 2020 8652 8 52

“Lena” 256 256 2070 7002 10 50

“Peppers” 250 230 1780 5942 22 69

“Sailboat” 256 256 2508 8540 23 42
January 2009/Vol. 48�1�4
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.2 Matching Using the SIFT Descriptor
he proposed object tracking method is applied to video
equences for object tracking. Therefore, we perform the
atching process between two adjacent frames. The best
atch for the features of the template image is found by

earching its nearest neighbor for the features in the target
mage. The nearest neighbor is defined as the one whose
eatures have the minimum Euclidean distance from the
nvariant descriptor vectors.

A certain number of features are selected in the template
mage by using Eq. �7� in order to reduce the computational
omplexity; in this paper 15 features of the template image
re used. In the target image, we extract SIFT features in
he search area. The search area is determined by plus or
inus the maximum movement range from the object po-

ition of the template image along the horizontal and verti-
al directions. We set the maximum movement range to six
ixels in our experiment.

.3 Finding the Optimum Relation
he proposed method finds an optimum relation between

he template and target images in a similar manner to ran-
om sample consensus �RANSAC�.16 RANSAC provides
oor results if inliers �i.e., well-matched features� comprise
ess than half of the overall matched features. Our method
elects a suitable number of features, and then calculates
he optimum relation between the template and target im-
ges using the selected features.

The relation between two images is defined by a 3-by-3
atrix with four degrees of freedom as follows17:

= �sx 0 − dx

0 sy − dy

0 0 1
	 , �8�

here sx and sy are the scale factors of the x and y axes,
espectively, and dx and dy are the translation factors of the
and y axes, respectively.

ig. 4 The probability mass function �pmf� of the minimum number
f features including six strongly matched features.
ptical Engineering 017204-
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At least four matched features are required to find the
relation between two images. The proposed method selects
four features from the overall matched features and finds a
relation using them. A distance is then computed for all
matched features by using the standard relation

Dist�x1,x2,R� = 
x1 − Rx2
 + 
x2 − R−1x1
 , �9�

where the 2-D position vectors x1 and x2 are the matched
features of the template and target images, respectively, and
R is the relation between the two images. The distances are
computed for every relation that is generated using four
features selected from all matched features. We selected
only six matched features, which have smallest distance
among all matched features. Among the six smallest-
distance matched features, four are used to find the relation
between the two images, and we compute the distances
from the other two to evaluate the relation’s suitability. Fi-
nally, the relation having the lowest distance value, which
is the sum of two distances, becomes the optimum relation
between two images.

After the optimum relation is obtained, the aiming point
in the target image is obtained by multiplying the optimum
relation matrix and the aiming point in the template image.
In addition, the template image is updated for tracking the
next frame by multiplying the optimum relation matrix with
the four corners of the object area in the template image.
The 15 features of the new template image are updated with
6 smallest-distance matched features and 9 new features
that have strong corner coefficients in the template image.

For determining the number of features required in the
template image, we evaluated the matched features in the
order of the corner coefficients of Eq. �7� for a given image
sequence consisting of 1000 frames. We found the mini-
mum number of template features in which six reliably
matched features can be successfully included. Figure 4
shows the probability mass function �pmf� of the minimum
number of features including six reliably matched features
among them. Though the computational complexity in the
template image increases, a more optimal relation between
the template and target images can be obtained as the num-
ber of features increases. We set the number of features to
15, resulting in a 94.4% rate of finding a suitable relation.

If an occlusion occurs in the target image or sufficient
matched features are not selected for finding the optimum
relation, the distance of the optimum relation will be larger
than a threshold value. In this paper, the threshold value is
determined to be 5 pixels in the first frame, and in the next
frame it is obtained by multiplying by a scale factor for the
optimum relation, s= �s 2+s 2�1/2. If the distance of the op-

Table 2 Image size, frame length, and target object of two IR and
CCD image sequences, which are used in the experiments.

Sequence Image size Frame length Object

IR sequence 1 128�128 1000 Approaching car

IR sequence 2 160�120 750 Approaching car

CCD sequence 160�120 60 Occluded car
x y

January 2009/Vol. 48�1�5
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Fig. 5 Experimental results of three tracking methods in 0th frame, 200th frame, 400th frame, 600th
frame, and 800th frame of an IR image sequence 1: fast template matching using �a� correlation-based
adaptive predictive search, �b� the SIFT tracker, and �c� the proposed method. The plotted squares,
square boxes, and crosses indicate features, templates, and aiming point, respectively.
Fig. 6 Tracking accuracy of three algorithms; the fast template matching algorithm using correlation-
based adaptive predictive search, the SIFT tracker, and the proposed method. The line with asterisks
indicates the manually marked aiming point.
ptical Engineering January 2009/Vol. 48�1�017204-6
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imum relation is larger than the threshold value, we do not
pdate the aiming point and template. Instead, the previous
emplate is used to match with the next frame.

Experimental Results
he first experiment shows the tracking accuracy of the
roposed method. We applied the SIFT algorithm and the
roposed method to IR and CCD image sequences. Table 2
epicts the image size, frame length, and target objects of
hree sequences.

Figure 5 shows the tracking results of three methods: the
ast template matching algorithm, the SIFT tracker, and the
roposed method. The fast template matching algorithm is
tracking method using correlation-based adaptive predic-

ive search,3 which is a fast matching method using corre-
ation. Figures 5�b� and 5�c� show the tracking results of
he SIFT algorithm and the proposed method, respectively,
or IR sequence 1. In the proposed method, the numbers of
eatures and strongly matched features are 15 and 6, respec-
ively. In order to evaluate the tracking results and tracking
rrors, we manually marked the center point of the object in
very frame. Figure 6 depicts the tracking results in �x ,y�
oordinates. All methods track the objects with similar ten-
encies. Exceptionally, in the y coordinate, the template
atching method tracks an object far from the manually
arked position, since the object size abruptly increases as

he object approaches the camera after the 500th frame.
Table 3 shows the processing times of the three methods

or 100 frames of the IR image sequence. The fast template
atching algorithm is notably fast, and the proposed
ethod is at least two times faster than the SIFT tracker.
Figure 7 shows the tracking results of IR sequence 2,

here an object is gradually zoomed from a point source
ntil it covers the whole frame. We applied two methods to
R sequence 2 for finding the minimum applicable object

Table 3 Frame rates of the IR image sequence
correlation-based adaptive predictive search, th

Frame
numbers

Fast template matching

Processing
time �s�

Frame
rate �Hz�

P

1–100 7.25 13.79

101–200 7.20 13.88

201–300 7.26 13.77

301–400 7.31 13.69

401–500 7.38 13.55

501–600 7.81 12.80

601–700 7.89 12.67

701–800 8.75 11.42

801–900 17.77 5.63

901–1000 23.94 4.18
computed in a second; fast template matching using
e SIFT tracker, and the proposed method.

SIFT tracker Proposed method

rocessing
time �s�

Frame
rate �Hz�

Processing
time �s�

Frame
rate �Hz�

62.56 1.60 28.66 3.49

141.25 0.70 35.98 2.78

187.35 0.53 38.92 2.57

219.05 0.46 43.78 2.39

276.26 0.36 40.13 2.49

322.01 0.31 43.96 2.27

322.03 0.31 50.10 2.00

322.34 0.31 63.81 1.57

304.89 0.33 74.55 1.34

254.36 0.39 73.83 1.35
ptical Engineering 017204-
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Fig. 7 �a� 0th frame, 550th frame, 580th frame, 600th frame, 650th
frame, and 680th frame of an IR image sequence 2, and the experi-
mental results of two tracking methods: �b� the SIFT tracker �600th
frame, and 650th frame, and 680th frame� and �c� the proposed
method �550th frame, 600th frame, and 650th frame�. The plotted
squares and crosses indicate features and aiming points,
respectively.
January 2009/Vol. 48�1�7
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ize. The SIFT tracker could find the object from the 600th
rame, where the object size was approximately 25�20.
he proposed method found the object from the 550th

rame, where the object size was approximately 20�13.
One of the greatest advantage of the SIFT algorithm is

hat it is possible to track an object even if the object is
artially occluded. In the image shown in Fig. 8, a person
ccludes a car moving forward. The figure shows the track-
ng results when the object is partially occluded. While the
ccluded image affects template matching, the proposed
ethod was fairly robust to occlusion, as shown in the
gure.

Conclusions
he SIFT tracker provides good performance as an efficient
bject tracker, even in the case of occluded and intensity-
ariant images. However, this approach suffers from high
omputational complexity and limitation on image size. In
his work, we have proposed an efficient object tracking

ethod using strong corners in scale space. The proposed
ethod reduces the computational complexity and can be

pplied to small targets.
The experimental results showed that the proposed

ethod delivers strong performance, and can also be ap-
lied to an occluded target. In addition, the proposed
ethod tracked the target at least twofold faster than the
IFT tracker.
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ig. 8 �a� CCD image sequence that has an occlusion across an
bject, and experimental results from two tracking methods of the
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