# Journal of Materials Chemistry

# COMMUNICATION

# Highly porous gallium oxide with a high $CO_2$ affinity for the photocatalytic conversion of carbon dioxide into methane<sup>†</sup>

Hang-ah Park, Jung Hoon Choi, Kyung Min Choi, Dong Ki Lee and Jeung Ku Kang\*

Received 17th January 2012, Accepted 3rd February 2012 DOI: 10.1039/c2jm30337j

Highly porous gallium oxide was synthesized by reconstructing its surface and body with mesopores and macropores. For the first time, the efficient photocatalytic conversion of  $CO_2$  into a high energy carrier,  $CH_4$ , using the porous gallium oxide was realized without any co-particle or sacrificial reagent. The enhanced photocatalytic activity is mainly attributed to the 300% higher  $CO_2$  adsorption capacity, as well as the 200% increased surface area, compared to the bulk nanoparticles. Furthermore, we propose the new reaction pathway based on the result that the carbon dioxide was converted directly into methane without going through carbon monoxide intermediates.

Due to the fact that the earth's current primary energy source is obtained through the combustion of fossil fuels, resulting in pollution and a climate change, the idea of artificial photosynthesis that uses carbon dioxide (CO<sub>2</sub>) to produce hydrocarbon fuels would offer an alternative durable source of energy.<sup>1-5</sup> Among these hydrocarbon fuels, a promising candidate fuel is methane (CH<sub>4</sub>), since it carries a high amount of energy per mass (55.7 kJ g<sup>-1</sup>). In order to convert CO<sub>2</sub> into CH<sub>4</sub>, it is important to develop a novel photocatalyst that uses solar energy and has a high affinity for CO<sub>2</sub>.<sup>6-8</sup>

Grimes *et al.*<sup>9</sup> studied a photocatalytic conversion of CO<sub>2</sub> using TiO<sub>2</sub> nanotubes, enabling charge carriers to readily reach surface species. Meanwhile, the photoactivity on the titania system was limited by its insufficient reduction potential<sup>5</sup> and high recombination rate of photo-generated electron–hole pairs.<sup>10,11</sup> Therefore, new hetero-structures combining with noble metals<sup>12</sup> such as Pt<sup>13</sup> and Ru<sup>14</sup> have been suggested to be used for the separation of electron–hole pairs, but there is a problem that novel metals are expensive. However, metal oxide photocatalysts with d<sup>10</sup> configurations (In<sup>3+</sup>, Ga<sup>3+</sup>, Ge<sup>4+</sup>, Sh<sup>4+</sup>, Sb<sup>5+</sup>)<sup>15,16</sup> are of great attention because hybridization between the s and p orbital of metals in the conduction band could enhance the mobility of photogenerated electrons, thus, producing high photocatalytic activity.<sup>17</sup> Among them, gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) is a promising CO<sub>2</sub> reduction photocatalyst due to its high reduction potential for CO<sub>2</sub>.<sup>18-21</sup> Tanaka *et al.*<sup>20</sup> carried out the

photoreduction of CO<sub>2</sub> using H<sub>2</sub> as a reductant over the bulk crystal of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>, but found that it gave only CO as the product. Consequently, the further breakthrough on gallium oxide for the conversion of CO<sub>2</sub> into CH<sub>4</sub> has remained unsolved.

Herein, we report a novel porous gallium oxide with meso-pores and macropores. The small amount of photocatalytic reaction sites, which is the biggest problem<sup>22</sup> with working with gallium oxide, was solved by reconstructing its surface and body with mesopores and macropores, combining the template method with hydrolysis of gallium nitrate. The synthetic procedures of the new porous Ga<sub>2</sub>O<sub>3</sub> and its CO<sub>2</sub> conversion processes are illustrated in Scheme 1. The efficient photocatalytic conversion of CO<sub>2</sub> into CH<sub>4</sub> was realized using the porous Ga<sub>2</sub>O<sub>3</sub> without any co-particle or sacrificial reagent.

The field emission scanning electron microscopy (FESEM) image in Fig. 1(a) shows that porous  $Ga_2O_3$  is rod-shaped and is monodispersed uniformly throughout the surface (see ESI<sup>†</sup>, Fig. S1<sup>†</sup>). Also, the cross-section SEM image in Fig. 1(b) and the transmission electron microscopy (TEM) image in Fig. 1(c) uncover the clear existence of inner and transmitted pores. In addition, the high resolution (HR) TEM image in Fig. 1(d) demonstrates the presence of mesopores below 5 nm in size and the X-ray diffraction pattern



Scheme 1 Schematic diagram of the synthesis of porous  $Ga_2O_3$  with mesopores and macropores, and the photocatalytic reaction process. Gallium hydroxide with surfactants was synthesized and then annealed to remove templates to form a porous  $Ga_2O_3$  structure.  $CO_2$  and  $H_2O$  were allowed to be adsorbed in pores and surface of the porous  $Ga_2O_3$ , and after light irradiation,  $CH_4$  was generated over porous  $Ga_2O_3$ .

Graduate school of EEWS and Materials Science and Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea. E-mail: jeungku@kaist.ac.kr

<sup>†</sup> Electronic supplementary information (ESI) available. See DOI: 10.1039/c2jm30337j



**Fig. 1** Particle morphology, inner pores, and crystal structure of the synthesized Ga<sub>2</sub>O<sub>3</sub>. FESEM images of porous Ga<sub>2</sub>O<sub>3</sub> with (a) top view and (b) vertical cross-sectional images fractured by the ion beam. (c) TEM image and (d) HRTEM with FFT images (inset). (e) XRD patterns of porous Ga<sub>2</sub>O<sub>3</sub> particles on a monoclinic  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> phase (JCPDS 87-1901). (f) Nitrogen adsorption (filled symbol)–desorption (open symbol) isotherm and pore size distribution (inset) of the porous Ga<sub>2</sub>O<sub>3</sub>.

proves that porous Ga<sub>2</sub>O<sub>3</sub> is crystalline. Fig. 1(e) shows that crystalline porous Ga<sub>2</sub>O<sub>3</sub> that calcined at 873 K is in a monoclinic  $\beta$ -phase (JCPDS 87-1901), and ESI† Fig. S2† unveils that the templates used to make pore structures were completely removed. Fig. 1(f) shows the nitrogen adsorption–desorption isotherm on porous Ga<sub>2</sub>O<sub>3</sub>. The surface area from the N<sub>2</sub> isotherm using the Brunauer–Emmett–Teller (BET) model<sup>23</sup> (*P*/P<sub>0</sub> = 0.05 to 0.3) for porous Ga<sub>2</sub>O<sub>3</sub> is 42.7 m<sup>2</sup> g<sup>-1</sup>. The pore size distribution is estimated by the desorption isotherm, using the Barrett, Joyner, and Halenda (BJH) method.<sup>24</sup> The average mesopore size for the porous Ga<sub>2</sub>O<sub>3</sub> is 3.8 nm, with a narrow distribution. Several ranges of mesopores were detected.

Fig. 2(a) shows the measured photocatalytic activity for the conversion of  $CO_2$  into  $CH_4$  over 50 mg of porous  $Ga_2O_3$  as a function of time in the presence of  $CO_2$  and  $H_2O$  vapor under photoirradiation. In the absence of photoirradiation,  $CH_4$  was not detected in the gas phase. After light irradiation,  $CO_2$  was converted into  $CH_4$  by porous  $Ga_2O_3$  photocatalysts, indicating a linear increase with time. The recycle reaction was also carried out after the evacuation of gases in the reactor and setting up to the initial photoreaction conditions. The evolution rate in this recycle reaction was unveiled to be restored to that of the original reaction. Fig. 2(b)



**Fig. 2** (a) Measured recycles of photocatalytic activity of the conversion of  $CO_2$  to  $CH_4$  over 50 mg of porous  $Ga_2O_3$ , after the evacuation and purging of  $CO_2$ . (b) Continuous photocatalytic activity on evolved methane for 10 hours over 50 mg of porous  $Ga_2O_3$  and ref- $Ga_2O_3$  samples. (c)  $CO_2$  adsorption capacities of porous  $Ga_2O_3$  and ref- $Ga_2O_3$  samples under ambient conditions.

illustrates the amount of CH<sub>4</sub> that has evolved from CO<sub>2</sub> over 50 mg of porous  $Ga_2O_3$ . The nanoparticles of  $\beta$ - $Ga_2O_3$  which is commercially available (ref-Ga<sub>2</sub>O<sub>3</sub>) were used as a reference sample. The ref- $Ga_2O_3$ , with a relatively small BET surface area of 20.49 m<sup>2</sup> g<sup>-1</sup> (see ESI<sup> $\dagger$ </sup> Fig. S3<sup> $\dagger$ </sup>), is in the same monoclinic  $\beta$ -phase as that of porous  $Ga_2O_3$ . Also, the UV-vis diffuse spectra of the porous  $Ga_2O_3$  and the ref-Ga<sub>2</sub>O<sub>3</sub> samples show their absorption edges at around 280 nm, as is evident in ESI<sup>†</sup> Fig. S4<sup>†</sup>. In this reaction, a large amount of CH<sub>4</sub> (2.09  $\mu$ mol g<sup>-1</sup>, 156 ppm) was produced through the CO<sub>2</sub> photocatalytic conversion over porous Ga<sub>2</sub>O<sub>3</sub> particles, while ref-Ga<sub>2</sub>O<sub>3</sub> produced smaller amounts of CH<sub>4</sub>. In order to find the critical factor for the enhanced photo-catalytic activity, the volumetric CO2 adsorption measurement was also carried out under ambient conditions. Fig. 2(c) shows the porous  $Ga_2O_3$  has an adsorption capacity 300% higher than ref-Ga<sub>2</sub>O<sub>3</sub>. Generally, the photocatalytic reaction occurs on the surface of a photocatalyst that can function as a reactive site.<sup>17,25</sup> As seen in Fig. 1(f), porous Ga<sub>2</sub>O<sub>3</sub> has a surface area that is larger than 200% of ref-Ga<sub>2</sub>O<sub>3</sub>. This means that a larger surface area provided more photocatalytic conversion sites. In addition, the porous  $Ga_2O_3$  allowed  $CO_2$  to be adsorbed with 3 times more capacity than that of ref-Ga<sub>2</sub>O<sub>3</sub> at room temperature under one bar condition. Thus, it could be deduced that the higher CO<sub>2</sub> uptake capacity contributes to the high conversion rate of  $CO_2$  into  $CH_4$  by allowing more reactant CO2 molecules to be adsorbed on the reactive surface.

Furthermore, it is noteworthy that the mesoporous channels of our synthesized  $Ga_2O_3$  possess the advantage to promote the separation of electron–hole pairs. Charge carriers generated inside of the porous  $Ga_2O_3$  could diffuse to the nearby mesopores where the gas molecules adsorbed, and convert  $CO_2$  with the reactant molecules at the solid–gas interface for production of CH<sub>4</sub>. In addition to mesopores, macropores are also significant for the photocatalytic reaction.<sup>26</sup> Cheng and co-workers<sup>27</sup> have reported that macroporous structures



**Fig. 3** (a) Energy band position of  $Ga_2O_3$  and the redox potential of  $CO_2$  at pH = 7, with respect to NHE. (b) The amount of the evolved products, CO and CH<sub>4</sub>, in the same photocatalytic reaction of the CO<sub>2</sub> reduction. (c) Photocatalytic activity from different atmospheres; amount of evolved CH<sub>4</sub> in CO<sub>2</sub> (red line) and CO (blue line). Other conditions are similar to those of previous experiments.

with mesopores enhance the photocatalytic activity of the titania system because the macropores act as the channels for light-penetration and gas-diffusion. Consequently, the enhanced photocatalytic conversion of  $CO_2$  into  $CH_4$  is attributed to the unique porous  $Ga_2O_3$  structure with mesopores and macropores.

The reason why Ga<sub>2</sub>O<sub>3</sub> converts CO<sub>2</sub> into CH<sub>4</sub> in the presence of H<sub>2</sub>O using solar energy can be explained based on the flat band positions of Ga<sub>2</sub>O<sub>3</sub> as well as the redox potentials for water and  $CO_2$  at pH = 7, with respect to NHE (normal hydrogen electrode). The schematic diagram is shown in Fig. 3(a).  $Ga_2O_3$  has a good reduction potential for the photocatalytic conversion of CO<sub>2</sub> into CH<sub>4</sub>. When Ga<sub>2</sub>O<sub>3</sub> absorbs light, the electron in the valence band is excited to the conduction band, and it would transfer to the surface of the Ga<sub>2</sub>O<sub>3</sub> where it reacts with CO<sub>2</sub> or intermediate molecules adsorbed. Meanwhile, a hole meets a water molecule to produce a proton (H<sup>+</sup>). Then, photoexcited electrons and protons contribute to conversion of CO<sub>2</sub> into CH<sub>4</sub>, where the required energy for CH<sub>4</sub> production is -0.24 eV (vs. NHE). The edge of the conduction band potential for  $Ga_2O_3$  lies at -1.449 eV (vs. NHE), which means that Ga<sub>2</sub>O<sub>3</sub> has sufficient reduction energy to produce CH<sub>4</sub> from CO<sub>2</sub> under light.

In order to determine a more detailed reaction mechanism, we measured carbon monoxide (CO) from the same reaction of the original test. Fig. 3(b) shows the photogenerated carbon monoxide and methane from carbon dioxide over 50 mg of porous Ga<sub>2</sub>O<sub>3</sub>. After light irradiation, a large amount of CO (14.63  $\mu$ mol g<sup>-1</sup>, 1092 ppm) was produced through the photo-catalytic conversion of CO<sub>2</sub>. The required energy for carbon monoxide production is -0.52 eV (vs. NHE), and the edge of the conduction band potential for Ga<sub>2</sub>O<sub>3</sub> is sufficient to produce CO from CO<sub>2</sub>. The evolved CO amount is seven times higher than CH<sub>4</sub>, which means carbon dioxide is more likely to reduce into carbon monoxide than methane.

Since a large amount of CO molecules as well as CH<sub>4</sub> was produced in the photoreaction, we conducted a further experiment on the photocatalytic reduction of CO into CH<sub>4</sub> in order to determine whether CO<sub>2</sub> can be reduced into CH<sub>4</sub> via CO or not. The experiment was carried out in CO gas, instead of CO<sub>2</sub>, but otherwise under the same conditions as the previous photo-reaction. Fig. 3(c) illustrates that there was a negligible amount of CH<sub>4</sub> produced when CO was converted to CH<sub>4</sub>, as compared to the amount of CH<sub>4</sub> that was produced when CO<sub>2</sub> was converted into CH<sub>4</sub>. As this result shows, the CO<sub>2</sub> molecules were converted into CH<sub>4</sub> not via CO intermediates, because carbon monoxide is hardly reduced into methane in the gallium oxide system. Therefore, in order to efficiently convert carbon dioxide into methane, it is pivotal to control reaction pathways of selective methane production. On the basis of these photo-catalytic reaction results, the carbon dioxide conversion mechanism in the gallium oxide system could be postulated as follows:

$$Ga_2O_3 + hv \rightarrow h^+ + e^- \tag{1}$$

$$H_2O + h^+ \to H^+ + OH \tag{2}$$

$$CO_2 + 8e^- + 8H^+ \rightarrow CH_4 + 2H_2O$$
 (3)

$$\mathrm{CO}_2 + 2\mathrm{e}^- + 2\mathrm{H}^+ \to \mathrm{CO} + \mathrm{H}_2\mathrm{O} \tag{4}$$

$$CO + 6e^{-} + 6H^{+} \not\rightarrow CH_{4} + H_{2}O$$
(5)

In order to evaluate the photocatalytic efficiency, the quantum yield is calculated, which is defined by eqn (6) (ref. 15)

Quantum yield (%) = 
$$\frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100\%$$
  
=  $\frac{8 \times \text{Number of evolved CH}_4 \text{ molecules}}{\text{Number of incident photons}} \times 100\%$  (6)

The quantum yield of  $CH_4$  evolution using 50 mg porous  $Ga_2O_3$  for 1 h is calculated to be 3.993%.

In conclusion, novel porous Ga2O3 which embodied mesopores and macropores in its surface and body was successfully synthesized by hydrolysis combined with the template method. The photocatalytic conversion of CO2 into CH4 using the porous gallium oxide was realized for the first time with about 400% higher conversion rate than that of ref-Ga<sub>2</sub>O<sub>3</sub>. The enhanced photocatalytic activity is attributed to the  $CO_2$  adsorption capacity higher by about 300%, resulting from the unique meso- and macropore structure, as well as the increased reactive sites by about 200% than those of ref-Ga<sub>2</sub>O<sub>3</sub>. Moreover, CO<sub>2</sub> was converted directly into methane not via CO intermediates, which indicates the  $CO_2$  conversion efficiency can be improved by controlling reaction pathways or combining other photocatalysts converting CO into CH<sub>4</sub>. Consequently, these results provide the potential of the porous gallium oxide material, and the new clue to enable the efficient conversion of CO<sub>2</sub> into hydrocarbon fuels via artificial photosynthesis.

# Methods

#### Preparation of porous gallium oxide

50 mg TTAB was dissolved in a solution composed of 25 ml of H<sub>2</sub>O with 1.5 ml NH<sub>4</sub>OH at 343 K, and then 0.01 ml of 1-dodecanethiol was added into the solution. The mixture was stirred for 30 minutes at 343 K. In the meantime, 1 g of gallium nitrate hydrate (Ga(NO<sub>3</sub>)<sub>3</sub>·*x*H<sub>2</sub>O) was dissolved in 200 ml of ethanol (50 vol%). Next, the mixture containing the surfactant was added to the ethanolic gallium nitrate solution, and stirred for 2 hours at 343 K. The resulting precipitate was filtered under vacuum, washed with distilled water, and dried under reduced pressure overnight. Lastly, the obtained solid was calcined at 873 K for 6 hours to remove organics and surfactants, and to form the β-phase Ga<sub>2</sub>O<sub>3</sub>.

### Characterization

Field emission scanning electron microscopy (FESEM) (JSM7600F) and Cs-corrected scanning transmission electron microscopy (JEM-ARM200F) have been used to produce the structural information. In addition, the crystallinity of the  $Ga_2O_3$  samples was determined by the powder X-ray diffraction pattern (XRD) (D/MAX-III C, 3 kW), and the gas adsorption–desorption measurements for N<sub>2</sub> and CO<sub>2</sub> were carried out on a Quantachrome Autosorb-6 system by the volumetric method.

#### Evaluation of photocatalytic properties

The photocatalytic experiments were carried out in a closed chamber system with gas inlet and outlet valves, a quartz window top, a septum-attached port, and a thermocouple connected to the chamber. Fifty mg of Ga<sub>2</sub>O<sub>3</sub> was loaded on a glass holder in the bottom of a reactor (dead volume: 15.74 ml). The chamber was purged with CO<sub>2</sub>, and distilled water (3 mmol) was injected into the chamber and evaporated. Next, the sample was irradiated through the top quartz window using a 300 W Xe lamp equipped with a cooling system and an IR cutting filter with the light intensity of 500 mW cm<sup>-2</sup>. Two hundred µl of the gas was periodically captured from the reactor using the gas tight syringe with the volume reproducible adaptor. The reaction was analyzed using the gas chromatograph (Agilent Technologies 7890A), with the thermal conductivity detector (TCD) equipped with a packed column and a 5 A molecular sieve, and argon was used as a carrier gas. Product gases were calibrated with a standard mixture gas and determined by the retention time.

# Acknowledgements

This work was supported by the Korea Center for Artificial Photosynthesis (KCAP) funded by the Ministry of Education, Science, and Technology (NRF-2011-C1AAA001-2011-00302 78), by the WCU (World Class University) program (R-31-2008-000-10055-0), by the grants from National Research Foundation (NRF-R0A-2007-000-20029-0, NRF-2011-0028737, NRF-2009-0094039, and NRF-2010-0007692) and by the Hydrogen Energy R&D Center.

## Notes and references

- 1 J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis and H. B. Gray, *Energy Environ. Sci.*, 2011, 4, 3573.
- 2 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, *Chem. Rev.*, 2010, **110**, 6446.
- 3 Y. Lee, J. H. Choi, H. J. Jeon, K. M. Choi, J. W. Lee and J. K. Kang, *Energy Environ. Sci.*, 2011, **4**, 914.
- 4 S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, ACS Nano, 2010, 4, 1259.
- 5 A. F. Collings and C. Critchley, *Artificial Photosynthesis*, Wiley-VCH, Weinheim, 2005, pp. 13.
- 6 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, 8, 76.
- 7 V. P. Indrakanti, J. D. Kubickib and H. H. Schobert, *Energy Environ. Sci.*, 2009, **2**, 745.
- 8 T. Inoue, A. Fujishima, S. Konishi and K. Honda, *Nature*, 1979, 277, 637.
- 9 O. K. Varghese, M. Paulose, T. J. LaTempa and C. A. Grimes, *Nano Lett.*, 2009, 9, 731.
- 10 M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, *Chem. Rev.*, 1995, 95, 69.
- 11 A. J. Cowan, J. Tang, W. Leng, J. R. Durrant and D. R. Klug, J. Phys. Chem., 2010, 114, 4208.
- 12 Y. L. Chen, D. Z. Li, X. C. Wang, X. X. Wng and X. Z. Fu, *Chem. Commun.*, 2004, 2304.
- 13 Q. H. Zhang, W. D. Han, Y. J. Hong and J. G. Yu, *Catal. Today*, 2009, **128**, 335.
- 14 N. Sasirekha, S. J. S. Basha and K. Shanthi, *Appl. Catal.*, B, 2006, 62, 169.
- 15 X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 2010, 110, 6503.
- 16 Y. Inoue, Energy Environ. Sci., 2009, 2, 364.
- 17 K. Maeda, K. Teramura, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, *Pure Appl. Chem.*, 2006, 78, 2267.
- 18 Y. Pan, C. Liu, D. Mei and Q. Ge, Langmuir, 2010, 26, 5551.
- 19 M. Calatayud, S. E. Collins, M. A. Baltana and A. L. Bonivardi, *Phys. Chem. Chem. Phys.*, 2009, **11**, 1397.
- 20 H. Tsuneoka, K. Teramura, T. Shishido and T. Tanaka, J. Phys. Chem. C, 2010, 114, 8892.
- 21 S. E. Collins, M. A. Baltanas and A. L. Bonivardi, J. Phys. Chem. B, 2006, 110, 5498.
- 22 C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, S. Hayashi, T. Tatsumi and K. Domen, *Angew. Chem.*, *Int. Ed.*, 2010, **49**, 1128.
- 23 S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309.
- 24 E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 1951, 73, 373.
- 25 Y. Hou, X. Wang, L. Wu, Z. Ding and X. Fu, *Environ. Sci. Technol.*, 2006, 40, 5799.
- 26 J. Liu, M. Li, J. Wang, Y. Song, L. Jiang, T. Murakami and A. Fujishima, *Environ. Sci. Technol.*, 2009, 43, 9425.
- 27 J. Yu, Y. Su and B. Cheng, Adv. Funct. Mater., 2007, 17, 1984.