Two Widely-Different Architectural Approaches
to Computer Image Generation

H.W. Park, K.S. Eo*, D.L. Kim, B.K. Choi*, Y. Kim, and T. Alexander
Image Computing Systems Laboratory
Department of Electrical Engineering, FT-10
University of Washington
Seattle, WA 98195
* from the Samsung Advanced Institute of Technology, Korea

Abstract

Among several systems from the UWGSP (Univer-
sity of Washington Graphics System Processor) series,
two recent architectures were designed for imaging and
graphics. One of them, UWGSP3, has already been
completed and is being used for selected applications,
while the other one, UWGSP/, is being implemented
now.

These two systems use parallel and pipelined ar-
chitectures for high performance graphics operations.
UWGSPS3 uses only commercially available off-the-
shelf chips, and consists of a TMS34020 graphics sys-
tem processor and four TMS384082 floating point co-
processors that can be configured into pipelined or
SIMD modes depending on the algorithm. UWGSP4,
however, uses dedicated ASIC (Application Specific
IC) chips for higher performance, and consists of two
main computational parts: a parallel vector processor
with 16 vector processing units, used mainly for image
processing, and a graphics subsystem which utilizes a
parallel pipelined architecture for image synthesis.

In this paper, the computer graphics aspects of both
UWGSP3 and UWGSP4 will be described.

1 Introduction

Computer image generation, i.e., computer graph-
ics, became very important and widespread in many
applications during the last decade, and is expected to
grow continuously in conjunction with image process-
ing and multimedia in the 1990’s [1]. This trend has
been accelerated by technology development (such as
VLSI technology, parallel and pipelined architectures,
image display technology, and interactive graphical
user interfaces), and proliferating application areas

CH3046-0/91/0000/0042/$01.00 © 1991 IEEE

42

(particularly scientific visualization, animation, ma-
chine vision, simulation, medical and military area,
and multimedia).

Among parallel and pipelined architectures,
pipelining has been the predominant technique for
computer graphics. Parallelism, however, can provide
several advantages, such as reconfigurability accord-
ing to different graphics algorithms, modularity, and
so on. The problems to achieve high computational
performance are load balancing between the computa-
tion stages in a pipelined structure and synchroniza-
tion and data passing between processors in a parallel
architecture. A combined architecture incorporating
both parallelism and pipelining may provide better
performance than a single architecture system if the
above problems are solved. Some commercial graphics
workstations use both parallelism and pipelining, for
example, the AT&T Pixel Machine [2].

For high-speed graphics, the operations most fre-
quently used in graphics should be supported by hard-
ware. In particular, antialiasing, alpha blending,
transparency, and texture mapping, as well as basic
Gouraud shading and 3-D vector drawing, are com-
mon features which are implemented with hardware
in high-end graphics systems.

The Image Computing Systems Laboratory (ICSL)
at the University of Washington has been developing
a series of imaging and graphics workstations, referred
to as the UWGSP (University of Washington Graph-
ics System Processor) series. Among the four systems
(UWGSP1 to UWGSP4), UWGSP3 was completed in
early 1990 [3], while UWGSP4 is currently under de-
velopment [4]. Both UWGSP3 and UWGSP4 utilize
parallel and pipelined architectures for image process-
ing and computer graphics. UWGSP3 has a reconfig-
urable architecture for pipelined or parallel process-
ing using only off-the-shelf programmable VLSI chips,

and is a low-cost and medium-performance imaging
and graphics workstation, whereas UWGSP4 will be
a medium cost and high performance system with a
highly parallel and pipelined architecture employing
dedicated ASIC chips. This paper describes the archi-
tecture of UWGSP3 and UWGSP4.

2 Configurable Parallel and Pipelined
Architecture

2.1 Overview of UWGSP3

The UWGSP3 system, based on the NeXT com-
puter platform, was completed in January 1990, and
the UWGSP3-HI, a host-independent version which
can work with any host computer via a simple inter-
face card, has been subsequently developed at ICSL
to accommodate various host computers without any
modification of the hardware except the interface card
[3]. Interfaces for the VME bus and the Micro Chan-
nel Architecture (MCA) bus have been completed.

Based on the TMS34020 graphics system processor,
coupled with four TMS34082 floating point coproces-
sors on a daughter board, UWGSP3 delivers moderate
performance for image and graphics processing, and
provides the following features:

e 2k x 2k x 32 bit (a total of 16 Mbytes) roamable
video/frame memory.

o 32 bits per pixel that can be configured either as
24-bit true-color pixels with 8 overlay bits or four
8-bit pseudo-color pixels.

¢ 1,280 x 1,024 60 Hz noninterlaced color display
with 1:1 screen aspect ratio.

e 160 MFLOPS peak performance for high-speed
integer and floating-point image processing and
graphics functions.

¢ Hardware zoom, roam and cursor support.

e Fast cine display up to 60 frames/sec.

o 3 different color lookup tables (LUT) per color
plane, which can be used simultaneously for re-
gion of interest (ROI) operations.

¢ Supports window-oriented user interface.

e Multiple UWGSP3s can be configured in the same
host computer.

2.2 Hardware Architecture

As shown in Fig. 1, UWGSP3 centers around the
Texas Instruments TMS34020 graphics system pro-
cessor, while four TMS34082 floating point coproces-
sors are used for the computation-intensive operations,
producing up to 160 MFLOPS of peak performance.

43

Video

DRAM
256k x 32 bits

Frame Buffer
2k x 2k x 32 bits
VRAM

Host
Gomputer Host
F

TMS
34020

tional Daughter Board

=

Fast SRAM|
B2k x 32 bits{=

=

TMS
34082
FPPs

Figure 1: Block diagram of UWGSP3-HI

Fach of the TMS34082 coprocessors has 128 kbytes
of dedicated memory to store patches of data trans-
ferred from the video RAM (VRAM) or DRAM of the
TMS34020, intermediate results, and program code.
This coprocessor memory is implemented with fast
static RAM so that memory access can be performed
in a single cycle. After a patch of the data is trans-
ferred to the coprocessor memory, the TMS34020 sig-
nals the coprocessor to start executing its instructions.
The data bus between the TMS34020 and the copro-
cessors can then be used to transfer another section
of the data from the TMS34020 to a different co-
processor. If the same code is loaded into each of
the coprocessor’s memory prior to the execution, all
four coprocessors perform the same processing on dif-
ferent data sets, after a slight delay caused by the
data transfer. This is very similar to the SIMD (sin-
gle instruction multiple data stream) mode of paral-
lel processing. If different program codes are used in
the coprocessors, MIMD (multiple instruction multi-
ple data stream) processing can also be performed. In
addition to the dedicated memory, a shared memory
of 8 kbytes, implemented with 4-port memory chips,
enables the coprocessors to communicate with each
other. The coprocessor board can be configured as a
4-stage pipelined processor, in which the image data
generated by the last stage are transferred back to the
VRAM and displayed on the screen.

The system memory on the UWGSP3 board in-
cludes 16 Mbytes of VRAM for the frame buffer and 1
Mbyte of DRAM for program and data storage. The
16 Mbytes of VRAM are configured as 2k x 2k x 32
bits, in which each 8-bit slice of the buffer constitutes
four color planes: red, green, blue, and overlay. An
8-bit image can be stored in any of these four planes
and displayed in gray scale or pseudo color, while a
94-bit true-color image can occupy the red, green, and

blue planes with 8 bits each. Since the display resolu-
tion (1,280 x 1,024) is smaller than the frame buffer,
the display window can be roamed around the frame
buffer. For example, up to 64 512 x 512 x 8-bit im-
ages or 256 256 x 256 x 8-bit images can be stored
in the frame buffer, and multiple frames can be dis-
played up to 60 frames/sec. The memory control sig-
nals for both the VRAM and DRAM are provided by
the TMS34020, thereby greatly simplifying the logic
circuits.

The video display subsystem consists of four Brook-
tree Bt460 RAMDACs and additional hardware cir-
cuitry. The RAMDACS receive pixel data from the
VRAMs and convert them to analog signals of red,
green, and blue. Each RAMDAC contains a 512 x 24
bit lookup table (LUT) that is used to generate 8-
bit values each for red, green, and blue components.
The red, green, and blue outputs of each RAMDAC
are then summed together and used to drive the color
monitor. To display 8-bit images, only one RAMDAC,
corresponding to the color plane where the image is
stored, is enabled and outputs the red, green, and
blue components. When displaying 24-bit true-color
images, each of the red, green, and blue RAMDACs
drives one color component. In this case, the overlay
RAMDAC can be enabled to superimpose text and an-
notations on top of the images. The RAMDAC:S also
include the functions of hardware cursor and zoom,
where the zoom factor can range from 1 to 8 in inte-
ger steps.

2.3 Software Architecture

UWGSP3 was designed for both image processing
and graphics applications, and we have developed a
collection of image processing and computer graphics
functions; the 3-D computer graphics applications will
be focused on here. There are three major categories
of the UWGSP3 graphics software: a 3-D graphics
rendering pipeline, graphical data management, and
graphics libraries.

The 3-D graphics rendering pipeline software ren-
ders 3-D objects provided by higher-level functions
(along with scene parameters, such as viewing loca-
tion, light intensity, and light direction), and displays
them on the screen from a perspective view. Several
rendering modes are supported: wire-frame, coloring,
flat shading, and Gouraud shading. The pipeline,
which consists of four TMS34082 coprocessors, sup-
ports graphics operations such as coordinate trans-
formations, back-face culling, clipping, rasterization,
Z-buffer comparison, and shading. The pixel data
generated by the pipeline is transferred back to the

44

TMS34020, which stores it in the correct location of
the frame buffer.

The graphical data management program runs on
the host computer and utilizes many graphics func-
tions implemented on UWGSP3 including the 3-D
graphics rendering pipeline. Users can generate com-
plex 3-D scenes by creating a hierarchical data struc-
ture of 3-D objects, and compiling the program on the
host computer with the supplied graphics database
management library. The library contains functions
to support the opening and closing of a structure,
adding and deleting an element to and from the struc-
ture, changing attributes of the structure and defining
viewing and lighting parameters. When the program
is executed, the structure defined by the user is trans-
formed into a more compact form with the hierarchical
information contained into individual data structures,
and transferred to UWGSP3. The functions residing
on UWGSP3 disassemble the received data into poly-
gons, and each polygon is passed to the 3-D graphics
pipeline until all of the polygons in the scene are drawn
on the scene.

In the case of standard graphics libraries, the UNIX
version of the TIGA (Texas Instruments Graphics Ar-
chitecture) software has almost been completely im-
plemented for supporting 2-D graphics capabilities,
and Ithaca Software’s HOOPS is also being ported to
UWGSP3 to support 3-D graphics. A ray-tracing pro-
gram has been implemented in UWGSP3, which gen-
erates very realistic images, including shadows, trans-
parency through an object, and reflections from other
objects. On traditional minicomputers, these pro-
grams require an exorbitantly high computing time,
but, on UWGSP3, a high-resolution 1k x 1k image
can be generated in one minute.

2.4 Lessons Learned from UWGSP3

Data communication between the TMS34020 and
the four TMS34082s became a bottleneck for the 3-D
graphics pipeline execution as the graphics routines
were optimized further. There is only one data bus
between the TMS34020 and the four TMS34082s, as
shown in Fig. 1. Therefore, the bus became satu-
rated while the TMS34020 distributed polygon data to
the four coprocessors and read back the final rendered
data in order to draw the polygons on the screen, caus-
ing a bottleneck. If the last stage coprocessor could
write the final computation results (synthesized im-
age) directly into the frame buffer, instead of through
the TMS34020, then better performance would be ob-
tained for graphics pipelined operations since the in-
put and output data flows of the pipeline could be

Parallel Vector Processor

VP Board #1 VP Board #2

In ssor Synchronization Logic Int ssor Synchronization
VIIV]IY V||V vi[vilvi[vlIIVv]{VYIIV]Y
pltei(pPl|PilPL]P]|P}||P plipl|p|lP]|P}[P}IP]|P
ul|uliju L ARRY) ujlullutluljuflulju}|v

L]
Four,
High
Speed
Buses 1

Dy

[Crossbar Interconnection Network |

[[[[(4 (1 04 [

Shared Memory &
Interconnection Network

Figure 2: Block diagram of UWGSP4

Geometry System
Engine Controller
Raster Engine
and Display

Graphics Subsystem

separated, reducing the amount of traffic on the bus.

3 Advanced Parallel and Pipelined Ar-
chitecture

3.1 Overall Architecture of UWGSP4

Utilizing the experience gained with UWGSP3, we
have designed and are now implementing UWGSP4,
which provides very high performance for image pro-
cessing and computer graphics. It exploits both par-
allel and pipelined architectures. Most of the image
processing functions are performed in a parallel fash-
ion, whereas graphics operations are mainly pipelined
(but also somewhat parallelized). Figure 2 shows the
block diagram of the UWGSP4 system: it consists of
a parallel vector processor, a graphics subsystem, and
a shared memory and interconnection network [4].

The parallel vector processor is the main computa-
tional unit in UWGSP4, through which image process-
ing operations and general arithmetic computations
are performed. In particular, most image processing
operations (such as image transforms and convolu-
tion) can be accelerated by parallel and vector pro-
cessing, since an image can be divided into several
sub-image blocks, and multiple processors can per-
form operations on the sub-image blocks in parallel.
In addition, most low-level image processing functions
require carrying out the same operation on a large
amount of data. The parallel vector processor con-
sists of 16 vector processing units which can operate
independently or in synchronism. Interprocessor syn-

45

chronization logic allows the 16 vector processing units
to successfully operate in a parallel fashion.

Each vector processing unit consists of dual float-
ing point processors, scalar and vector register files,
an instruction and data cache, a master control ASIC,
a pixel formatter unit (PFU) for pixel data handling,
and a bus interface unit (BIU). The dual floating point
processors operate in an alternating fashion with a 20
MHz two-phase clock, whereas the other units operate
with a 40 MHz clock. The master control ASIC fetches
and interprets instructions, and controls all parts of
the vector processing unit so as to execute the desired
arithmetic and logical operations. The PFU handles
data conversion between floating point and integer val-
ues “on-the-fly”. Most image pixel data consists of
8-bit or 16-bit unsigned integer values, whereas image
computations should be performed in floating point for
accuracy. The PFU relieves the floating point proces-
sors from having to perform pixel formatting, so that
the processors can concentrate on the main compu-
tation without continually breaking up the pipeline.
The peak computational performance of the parallel
vector processor is 1,280 MFLOPS.

In order for the parallel vector processor to perform
image processing at high speed, the shared memory
and the interconnection network should provide high-
speed data transfer, since most of the performance lim-
itations in parallel computing systems, e.g., UWGSP3,
arise from memory access bottlenecks and data trans-
fer rate. The shared memory and the interconnection
network provide a 1,280 Mbytes/sec data transfer rate.
This rate can supply each vector processing unit with
one-word (32 bits) data in every two clock cycles (50
nsec). This is relatively slow compared with, for ex-
ample, a Cray X-MP supercomputer, where each vec-
tor processing unit can be supplied with two loads
and one store of a 64-bit data word every 8.5 nsec [5].
However, the parallel vector processor is optimized for
image processing, which requires less data access, and
not optimized for general computations which may re-
quire high memory access bandwidth.

The shared memory consists of many memory mod-
ules in a 32-way interleaved fashion, with which the
required 1,280 Mbytes/sec memory access rate can be
achieved. Scalar data, a column or row vector, or
2-D array data with arbitrary strides can be accessed
from the shared memory with a single command. This
function is supported by the port controller and the
memory controller ASICs. There are eight port con-
trollers and eight memory controllers in the shared
memory, all of which are implemented in CMOS gate-
array ASICs. For communication between the port

Geomertry Engine Raster Engin e v

me B i

Pipeline [BBI ASIC & Z-Buffer ta ¢

st | [T] ||
i808e0 Pipeline i1 P
peline Tame Bulter| i

(4% 180860) BBIASIC {gm{ & Z Buffer o] |

Tame Bulfer 7

BBI ASIC & Z-Buffer o ;

n

3

Image Block
- BIUI Transfer
High ¥
Speed Frame Buffer Cursor
Buses Interface Generator RGB
| BrUO TighSpeed RAMDACs v_id:
Bus A
Interface 1280 x 1024 x 8 Signal
. Overlay 4 Ml
Host B t bytes
it lnlcl"’f:cc Buffer System
20 Mbytes/s Memory
System)
Controller
Local L
TMS34020 Bus -
Interface Local Bus

Figure 3: Block diagram of the graphics subsystem of
UWGSP4

controllers and the memory controllers, an 8 x 8 x 40-
bit crossbar network is implemented. Each port con-
troller is connected to two vector processing units
through a high-speed bus, and two port controllers
share one high-speed bus. In order to provide a 1,280
Mbytes/sec data bandwidth, four high-speed buses,
operating with an 80 MHz speed, are used.

Since most graphics applications require operations
using very small size matrices (3 x 3 or 4 x 4) in com-
parison with image processing, the parallel vector pro-
cessor is not an optimum computational engine for
graphics operations. Therefore, a separate graphics
subsystem was designed to support fast generation of
realistic 3-D graphics images, to display the synthe-
sized images into the screen, and to interface with the
host computer. The TMS34020 maintains the host in-
terface, acts as a central controller for the UWGSP4
system, and controls a 1,280 x 1,024 x 8-bit overlay
buffer. The data transfer rate between the host com-
puter and UWGSP4 through the host interface is 20
Mbytes/sec.

3.2 The Graphics Subsystem of UWGSP4

The graphics subsystem of UWGSP4 consists of
three major parts: the geometry engine, the raster
engine and the system controller, as shown in Fig. 3.

The graphics subsystem is connected to two high-
speed buses through bus interface units (BIUO and
BIU1). To deliver host commands to the parallel vec-
tor processor or the geometry engine, the system con-
troller stores the host commands in a specific region

46

of the shared memory via BIUO. BIUO is also used
to transfer images from the shared memory to the
frame buffer of the graphics subsystem at the rate of
40 Mpixels/sec. This transfer rate enables the system
to display a 1k x 1k image in 25 msec. BIU1, on the
other hand, is used to transfer the geometric data of
polygons and other drawing parameters to the geom-
etry engine.

The key features of the geometry engine and raster
engine are: a polyhedral object model, 3-D vector
drawing, Gouraud shading, antialiased vector and
polygon drawing, transparency, and hardware texture
mapping.

3.2.1 The Parallel Pipelined Geometry En-
gine

The geometry engine is responsible for the front-
end processing of the global Z-buffer algorithm used
for 3-D computer image generation. The processes
performed in the front-end engine include geometric
transformation, back-face culling, illumination, clip-
ping, projection, triangulation, span generation, etc.,
while the back-end processor, called the raster engine,
is implemented with four bit-blit interpolator (BBI)
ASIC chips. The main functions of the raster engine
are scan conversion based on the Z-buffer algorithm
and digital differential analyzer (DDA) calculations
for line and polygon drawing.

The geometry engine consists of nine 40 MHz Intel
i80860 RISC microprocessors operating in a parallel-
pipelined fashion for maximum performance. The
iB0860 has an on-chip pipelined floating-point proces-
sor which enhances the performance of the system,
since most of the geometric computations for com-
puter graphics are floating-point intensive. Figure 4
shows its detailed architecture. The first 180860, called
the head processor, communicates with the shared
memory through a high-speed bus to access the ac-
tual polygons by traversing an object hierarchy. The
head processor calculates the total amount of com-
putational effort required for rendering each polygon
and distributes it such that all pipeline stages have
approximately equal loads. The head processor has
an 8k x 64 SRAM as its local memory, to store its
instruction code and data as well as the structural in-
formation of the object hierarchy (the physical data is
stored in the shared memory).

The graphics engine is not limited to a specific
graphics algorithm. Since each pipelined stage is pro-
vided by a general floating point processor (180860),
any new graphics algorithm can be programmed and
applied to the geometry engine by changing the

FIFOs (512 x 32) Pipeline 1

i80860 80860 80860 80860
trans- span
formation lighting clipping generation
A i
— TooT Y BBI
80860 Memory Shared through
Head k x 64 Memory Com-
Bus| [P 16M x 32 mand
Interfage Distri-
Unit)
80860 80860 80860 180860
trans- span
formation lighting clipping generation

FIFOs (512 x 32)

Pipeline II

Figure 4: Block diagram of the parallel-pipelined ge-
ometry engine

firmware of the i80860s.

The head processor is followed by two identical
pipelines. The head processor distributes polygons to
the first stages of the two pipelines according to their
requests. The number of pipelines required is deter-
mined by the processing speed of the head processor,
the bandwidth of the high-speed bus, and the perfor-
mance of the raster engine consisting of BBI ASIC
chips. Our baseline system design has high flexibil-
ity and can be reconfigured to meet a wide variety of
performance requirements.

In general, the loads of the four stages in the
pipeline of the geometric engine are assigned as fol-
lows:

¢ Stage 1: Transformation of coordinates and vec-
tors

e Stage 2: Light modeling (illumination)

e Stage 3: Clipping polygons against the six view
facets

e Stage 4: Triangulation and span generation

The boundaries of load assignments, however, can
be moved dynamically for load balancing. Each i80860
reads input data from the input FIFO (which is the
output FIFO of its previous stage), processes it, and
writes the results to its output FIFO. The geome-
try engine can sustain a performance of over 200,000
Gouraud-shaded 100-pixel polygons per second.

The hierarchical object definition method requires
object flattening; in this process, the object hierar-
chy is traversed and each polygon is extracted. The
architecture of the graphics subsystem supports this

47

feature. Manipulation of the object hierarchy will be
done by the head processor of the geometry engine.
Calculation of the polygon surface normal and ver-
tex surface normal (obtained by averaging the surface
normals of the polygons containing the vertex) can be
also performed in the head processor. These will make
it easy to port standard 3-D graphics packages, e.g.,
PHIGS+ or HOOPS, into UWGSP4.

The polygon data are received from the host com-
puter through the host interface, and are stored in
the shared memory. In order to facilitate the hidden-
surface removal process, which is one of the most time-
consuming tasks in image synthesis, they need to be
transformed into a new coordinate system, ie., the
“eye coordinate system.” Such a coordinate transfor-
mation requires vector-matrix multiplications, which
are well suited to the i80860s.

If all objects (polygons) in the scene are blocking
(opaque), we can eliminate those objects which are
back-facing with respect to the eye from the illumi-
nation and hidden surface removal processes, because
they cannot contribute to the final synthesized image.
This is called back-face culling. Since, on the average,
about half of each object in the scene is back-facing
with respect to the eye, the number of polygons will
be reduced to half the original number after back-face
culling. Back-face culling requires only a simple vec-
tor inner product between the polygon surface normal
and the eye vector (whose direction is from the eye to
the polygon), and it saves many unnecessary compu-
tations, resulting in an effective performance increase
by nearly a factor of two.

It is very difficult to model the illumination of a
natural object based on the real properties of light.
A popular model used in computer graphics today is
to compute the color of an object surface from the
light source, surface characteristics, and its orientation
with respect to the light source. The calculations are
classified into three components such as the ambient,
diffuse reflection, and specular reflection terms. In the
case of a transparent object, an additional term, the
transmittance, is added. This popular illumination
model (including transparency) is used in the graphics
subsystem.

Sophisticated smooth-shading techniques are nec-
essary to render the smooth surface in the polyhe-
dral object model. Gouraud shading has been most
popular while Phong shading is more computation-
ally expensive than Gouraud shading, but can gener-
ate more realistic images [6] [7]. However, since the
quality of the images generated by Gouraud shading
is acceptable in most engineering applications, and

Phong shading requires more complicated hardware,
the Gouraud shading scheme is used in the graphics
subsystem. And many objects in the scene may lie
on the screen boundary or out of it. As these objects
cannot contribute to the output image in the local il-
lumination model, 3-D clipping is required to reduce
the number of polygons to be rendered and to facili-
tate scan conversion.

The input to the BBI is in the form of spans of
pixels which can be generated by slicing the polygon
horizontally. These are often called scan line com-
mands, or simply spans. A span consists of the X
and Y coordinates of the starting point, a run length,
the function values at the starting point, and their X
derivatives. The BBI interpolates the scan line com-
mand by iteratively adding the X derivatives to the
corresponding function values.

In the case of triangles, the X and Y derivatives of
the function values are constant. Thus it is not nec-
essary to update those derivatives at every scan line
and every pixel, which results in a significant reduc-
tion of the computational cost. The output image of
this scheme is not identical to that of real Gouraud
shading, but the results are acceptable and indistin-
guishable from those of real Gouraud shading.

3.2.2 Raster Engine

The raster engine in the graphics subsystem of
UWGSP4 consists of four CMOS standard cell-
based ASICs, called bit-blit interpolators (BBI), and
VRAMs comprising double frame buffers and a Z
buffer.

As mentioned in the previous subsection, geometry
transformation, clipping, lighting, and projection for
computer image generation are performed by the ge-
ometry engine. The BBI’s primary role is the render-
ing of the span data delivered by the geometry engine.
The BBI can perform the following functions: polygon
span drawing, 3-D line drawing, Gouraud shading, an-
tialiasing, transparency, alpha blending, plane mask-
ing, bit plane and block image transfer, texture map-
ping, and multi-window control. Four BBIs operate in
parallel to deliver a peak polygon rendering through-
put of 200,000 Gouraud-shaded 100-pixel polygons per
second.

There are seven instructions for the BBI: scan con-
version of general spans, scan conversion of texture-
mapped spans, general line drawing, color and Z-value
fill, bit plane and block image transfer, mask register
load, and screen refresh counter load. The BBI re-
ceives instructions from the geometry engine through
the command distributor, interprets the instructions,

48

R.AR.
R 1 _pewR o
oldR, texture—p~1 Channel
- alpha info —
Sommand GAG
Interface lopui G G | newG)
0ldG, texture—»{ Channel
alpha info ——#
B ABB - lt—
Input new B Frame
™1 0ldB, texture—w{ Channcl Buffer
alpha info —%1
= < Lar A new A
2 ;':-" oldA, texture —»{ Channel {—=aipha info 3
- - crage
L L L
% & Z.AZ - e 7 b
2™ Iny z - E Z Buffer
- - Channel | R.G B write .
Bl |2 oldz Z write $
new U
new V
Xy |-newX
- XY Channel _:“’ Y Address
span length Coverage
i Me:
o ConrolSignals Comray
System Controllgr oad € o d] Ready Signals
Sute State
Machine | Done Machine

— J

Interrupt Request
from

Systern controiler

Figure 5: Block diagram of the BBI ASIC

and performs proper operations.

Figure 5 shows the block diagram of the BBI. Each
BBI has two separate input register files. While the
BBI executes an instruction from one input register
file, it also fetches the next instruction from the com-
mand distributor and stores it to the second input reg-
ister file, effectively eliminating the instruction fetch
time. Each BBI has eight channels, consisting of an
interpolator and alpha blending unit to calculate new
pixel values for red, green, and blue colors, an alpha
value for transparency/coverage, a Z value for image
depth, U and V values for texture mapping, and a Y
value for 3-D vector drawing. A quadratic interpola-
tion scheme is used for U and V, whereas the other
values are linearly interpolated. The new pixel value
is selected from four different values, i.e., the pixel
data transferred from the command distributor, the
interpolator output, the alpha blending unit output,
and the masked values in each channel, according to
the instruction. After the BBI computes a new pixel
value, the Z channel compares the new Z value with
the old Z value (stored in the Z buffer) to determine
whether the new color and Z values should be writ-
ten into the frame buffer and Z buffer. The BBI also
contains address generators to generate row and col-
umn addresses for the frame buffer and Z buffer, and
to select the drawing buffer or the refresh buffer in

the double buffer structure. The image data trans-
fer speed from the shared memory to the frame buffer
is 40 Mpixels/sec. Therefore, 40 consecutive 1k x 1k
images (e.g., cine angiogram) can be displayed every
second. The BBI also generates memory control sig-
nals to control the VRAMs in the frame buffer and Z
buffer. If any memory refresh or display refresh com-
mands are received from the system controller, the
BBI generates appropriate control signals for VRAMs.

The double frame buffers consist of two 2,048 x
1,024 x 32-bit buffers built using VRAMs, with each
pixel being 32 bits deep to support realistic animation
with 24-bit true color. The remaining eight bits are
used for storing alpha values which are used for trans-
parency and antialiasing. Although each frame buffer
is built with 2,048 x 1,024 pixels, the actual screen
resolution is 1,280 x 1,024. Therefore, we have two
remaining memory areas each of which has a dimen-
sion of 768 x 1,024 x 32 bits. These memory areas are
used for storing the image data for texture mapping.
Since they are directly accessible from the BBIs, the
texture mapping operation can be performed very fast.
The Z buffer, whose size is 1,280 x 1,024 x 24 bits,
is implemented with VRAMs as well, which signifi-
cantly speeds up the global Z buffer algorithm. Each
pixel has a 16-bit offset Z value and an 8-bit base Z
value. The image data stored in the frame buffer is
transferred to the RAMDACS to be displayed on the
screen.

4 Conclusions

Two different architectures have been designed
for high performance imaging and computer graph-
ics. The first architecture, UWGSP3, which consists
of exclusively commercially-available processors (one
graphics system processor and four floating point co-
processors), has structure that is reconfigurable ac-
cording to the imaging and graphics algorithms being
implemented. UWGSP3, which has moderate perfor-
mance, is applicable to an image display and process-
ing system for an electronic filmless PACS (Picture
Archiving and Communications System) for radiology
which requires a high display speed with moderate
computing power [8].

The second architecture, UWGSP4, was designed
with highly parallel and pipelined structures, and con-
sists of two parts, performing imaging and graphics
separately. The graphics part uses a combination
of parallel and pipelined architectures to achieve a
graphics performance of 200,000 Gouraud shaded 100-
pixel polygons/sec and 250,000 3-D shaded 100-pixel

49

lines/sec. Since the imaging and graphics performance
of UWGSP4 is very high (e.g., simulation results show
that less than 0.2 sec is required for a 2-D FFT of a
1k x 1k image), it has wide application areas including
scientific visualization, medical imaging, various mili-
tary applications, animation and simulation. In par-
ticular, by integrating high performance imaging and
graphics into one system, UWGSP4 meets the require-
ments of those application areas where both imaging
and graphics must be supported in a single platform:
for instance, volume rendering and ray tracing as ap-
plied to medical imaging (e.g., image reconstruction
and bone detection from X-ray CT) to aid in planning
radiation therapy and surgery by allowing the physi-
cian to visualize a 3-D model of the extracted target
on the screen.

References

[1} J.D. Foley, A. van Dam, S.K. Feiner, and J.F.
Hughes, Computer Graphics: Principles and
Practice (second edition), Addison-Wesley Pub-
lishing Co., 1990.

M. Potmesil and E.M. Hoffert, “The Pixel Ma-

chine: A Parallel Image Computer,” ACM Com-

puter Graphics, Vol. 23(3), pp. 69-78, 1989.

K.S. Mills, G.K. Wong, and Y. Kim, “A High

Performance Floating-Point Image Computing

Workstation for Medical Application,” Proceed-

ings of SPIE Medical Imaging IV, Vol. 1232, pp.

246-256, 1990.

H.W. Park, T. Alexander, S.H. Moon, and Y.

Kim, “A High Performance Parallel Comput-

ing System for Imaging and Graphics,” Proceed-

ings of IEEE Pacific Rim Conference, Victoria,

Canada, May 9th-10th, pp. 223-226, 1991.

T. Cheung and J.E. Smith, “A Simulation Study

of the CRAY X-MP Memory System,” IEEE

Trans. on Computer, Vol. C-35(7), pp. 613-622,

1986.

H. Gouraud, “Continuous Shading of Curved Sur-

faces,” IEEE Trans. on Computers, Vol. C-20(6),

pp. 623-629, 1971.

{7] B.T. Phong, “Illumination for Computer Gen-
erated Pictures,” Communications ACM, Vol.
18(6), pp. 311-317, 1975.

[8] D.K. Yee, W. Lee, D.L. Kim, C.D. Haass, A.H.
Rowberg, and Y. Kim, “RadGSP: A Medical Im-
age Display and User Interface for UWGSP3,”
Proceedings of SPIE Medical Imaging V, Vol.
1444, pp. 292-305, 1991.

(2]

(3]

4]

(5]

(6}

