
22 Young-Tae Han et al. © 2010 ETRI Journal, Volume 32, Number 1, February 2010

The pervasive game environments have activated
explosive growth of the Internet over recent decades. Thus,
understanding Internet traffic characteristics and precise
classification have become important issues in network
management, resource provisioning, and game application
development. Naturally, much attention has been given to
analyzing and modeling game traffic. Little research,
however, has been undertaken on the classification of
game traffic. In this paper, we perform an interpretive
traffic analysis of popular game applications at the
transport layer and propose a new classification method
based on a simple decision tree, called an alternative
decision tree (ADT), which utilizes the statistical traffic
characteristics of game applications. Experimental results
show that ADT precisely classifies game traffic from other
application traffic types with limited traffic features and a
small number of packets, while maintaining low
complexity by utilizing a simple decision tree.

Keywords: Game traffic, traffic classification, traffic
measurement.

Manuscript received May 5, 2009; revised Aug. 11, 2009; accepted Sept. 9, 2009.
This research was supported by the MKE (Ministry of Knowledge Economy), Korea, under

the ITRC (Information Technology Research Center) support program supervised by the NIPA
(National IT Industry Promotion Agency) (NIPA-2009-(C1090-0902-0036)).

Young-Tae Han (phone: +82 42 350 6250, email: han0tae@gmail.com) and Hong-Shik
Park (email: parkhs@ee.kaist.ac.kr) are with the Department of Information and
Communications, Korea Advanced Institute of Science and Technology, Daejeon, Rep. of
Korea.

doi:10.4218/etrij.10.0109.0236

I. Introduction

The pervasiveness of game environments [1] has activated
an explosive growth in game traffic. In [2], it was reported that
nearly 4% of all packets in a backbone is from only 6 popular
games in the USA, and network computer games based upon
P2P models are predicted to make up over 25% of LAN traffic
by the year 2010. Game traffic has become one of the most
dominant traffic types in current networks. Also, game services
have quality of service (QoS) issues [3]. Attention from game
service providers has been paid to the game industry market, as
this service is one of the most beneficial business areas of the
Internet.

Game applications are divided into several genres. The most
popular game genres are massive multiplayer online role
playing game (MMORPG), first person shooting (FPS), and
real-time strategy (RTS) [4]. Their traffic characteristics differ
according to their genre. Furthermore, many game services,
such as Starcraft and KartRider, have adopted a peer-to-peer
(P2P) communication model. P2P models are widely used in
many file-sharing applications. These applications have been
highlighted during the past several years in the research of
traffic classification and modeling due to their high traffic
volume, but game services have not. As a result, the traffic
characteristics of P2P game applications are little known to the
public compared to P2P file-sharing applications. The few
known characteristics of games include packet-size distribution
and inter-arrival time. Generally, packet size and inter-arrival
time are much smaller [5] than in other best-effort services
such as HTTP and FTP. Also, games have longer connection
times than other services. Figure 1 shows that the average
connection time for the top 20 most popular games in Korea
[6] is about 35 minutes. However, these characteristics are not

Game Traffic Classification Using
Statistical Characteristics at the Transport Layer

 Young-Tae Han and Hong-Shik Park

ETRI Journal, Volume 32, Number 1, February 2010 Young-Tae Han et al. 23

Fig. 1. Average connection time.

0 10 20 30 40 50

Connection time (min)

FIFA Online
Counter-strike

Rohan
Atlantica

R2
Hangame New-Gostop

Freestyle
Mu

Hellgate-London
KartRider

Audition
Lineage II

Dungeon & Fighter
Warcraft III

Special Force
World of Warcraft

Maple Story

Lineage
Starcraft

Sudden Attack

enough to classify game traffic efficiently; therefore, it is
imperative to further investigate traffic characteristics.

To guarantee QoS in the best-effort network, network
management and traffic engineering are essential. For network
management and traffic engineering, traffic classification is
required [7]. For example, if network providers desire to
control traffic from file-sharing P2P, malicious applications
such as viruses and malware, and services requiring stringent
QoS such as real-time and game services, they should classify
traffic. With traffic classification, they can throttle or block high
volume traffic applications or malicious applications. Also,
traffic classification may be a core element of automated
intrusion detection systems [8]. The classification methods
include online and offline classification. Online classification
determines the application type while a flow is in progress, and
offline classification determines the application type when no
flow is in progress. There have been many methods for traffic
classification of Internet applications. The widely used
methods are port-number-based and payload-content-based.
Basically, the port-number-based method is very simple, but its
accuracy is low, as many emerging applications do not use
known fixed port numbers. On the other hand, the payload-
content-based method has very good accuracy. The limitations
of this method are its complexity and scalability. Furthermore,
there is a content protection issue. Currently, some data mining
techniques are being used due to the limitations of these two
methods [9]-[11]. For data mining or machine learning
techniques [12]-[15], their accuracy varies depending on what
features are used for classification. Furthermore, many
previous studies [9], [12], [13] have mainly focused on P2P
applications due to their high traffic volume and traffic

dynamic. Little research, however, has been undertaken on
game traffic classification in spite of its explosive growth. To
classify applications accurately, various types of statistical data
are required at the packet or flow level. Moore and others [16]
defined many discriminators, but they did not discuss which
discriminators are more useful.

In this paper, for the design of a classification method
focused on game applications, popular game applications in
Korea are examined at the transport layer. Statistically salient
characteristics are found, and these are used as key
discriminators for traffic classification. One of our findings is
that some applications could be simply classified using a set of
frequently used packet sizes and its order of elements without
complex methods. Also, we observed that distributions of
packet sizes for the specific applications are very similar
among them, especially in a P2P model; therefore, the
correlation values of packet size distributions are utilized in our
method. To design a classification method, we exploited offline
classification. The reason is that online classification is harder
than offline classification because only partial information is
available. We propose a traffic classification method for
classifying game traffic which utilizes a simple alternative
decision tree (ADT) by reflecting statistical characteristics of
game applications. ADT has two phases for classifying traffic.
In the first phase, statistical data of every flow is examined, and
the flow for the P2P model is pre-classified, or the server IP
address for the client and server (C&S) model is gathered. In
the second phase, flows are grouped using an IP address and
port number pair, and these groups are then classified. The
benefits of our method are that it does not examine user data so
it can be released from forensic issues such as privacy
protection, and it precisely classifies game applications with
limited traffic features and a small number of packets up to a
thousand packets while maintaining low complexity compared
to conventional methods.

The remainder of this paper is organized as follows. In
section II, related works regarding the characterization of game
traffic and application identification or classification are
presented. Traffic-traced sets of reference applications and
some salient features of game applications are described in
section IV. Then, the proposed ADT for classifying game
traffic is described in section IV, and experimental results are
presented in section V. Finally, section VI concludes the paper.

II. Related Works

In this section, we explain previous works related to game
traffic analysis and characterization and present traffic
classification methods. There has been little research in game
traffic classification; therefore, we begin by describing some

24 Young-Tae Han et al. ETRI Journal, Volume 32, Number 1, February 2010

common classification methods.
Previously, much attention [18]-[25] has been paid to

investigating packet size and inter-arrival time for the analysis
and modeling of internet traffic including game applications. In
these works, the packet size and packet inter-arrival time are
the main features. Many researchers have analyzed Internet
traffic from these perspectives and have tried to find suitable
statistical traffic models. In game applications, the average
packet size is very small, ranging from about 20 bytes to
200 bytes. The known distributions of packet inter-arrival time
in [17], [18] are extreme, lognormal, and shifted Weibull
distributions. The packet size and packet inter-arrival time are
well modeled because traffic patterns of game applications are
quite deterministic. The presented games are Quake [17]-[20],
Counter-strike [18], [21], and Starcraft [22], [23]. Two of the
three, Quake and Counter-strike, are FPS games because FPS
games are not only very popular but also very QoS-sensitive
applications [24]. The communication models of these games
are P2P or C&S. Another popular game genre is MMORPG. In
[24] and [25], the characteristics of MMORPGs, such as
Shenzhou and Lineage, which are C&S-based applications, are
presented. As previously mentioned, many of these works
focus on finding proper game traffic models in terms of packet
size and packet inter-arrival time and do not aim at classifying
game applications.

In studies related to traffic classification, there are two
popular methods; port-number-based methods and payload-
content-based methods. Traditionally, application identification
has been performed using well-known port numbers because
most applications use a static port number. Previously, the
IANA port number list [26] was used for traffic classification.
However, many emerging P2P applications assign a random
port number. Furthermore, some applications that use the C&S
model also use a random port number assignment. This
random assignment makes it difficult to identify applications
using a port number. In the case of payload-content-based
methods [9], [10], [12], to identify applications, whole or
specific parts of the payload content should be examined. This
method can identify applications precisely, but it has a
scalability problem because it requires large storage and is very
complex for finding and mapping a signature. Even though
there are sufficient resources and we have overcome these
problems, we cannot identify applications if there are no
signatures or if the data is encrypted. For game services, most
game protocols follow a closed-source, not open-source,
proprietary design. Thus, most game protocols are not open to
the public. For this reason, it is very difficult to classify game
applications, and a new method to classify these applications is
needed.

For P2P file sharing applications, many classification

methods based on data mining or machine learning techniques
are used due to their large traffic volume and traffic dynamics.
However, little research [27] tries to classify game applications
using machine learning methods. These methods demonstrate
good performance in classifying specific applications, but they
are still complex to implement. Some other studies [28], [29]
use a very simple classification method for limited applications.
The authors in [28] identified real-time applications using
correlation coefficient values of packet size distributions. This
shows that even though packets are encrypted or lost, packet
size distributions are highly correlated between those of the
same application flows. Although the correlation coefficient
value of packet size distributions can be considered one of the
key parameters to identify applications, it cannot be a unique
parameter. The authors of [29] demonstrate some voice-over-IP
(VoIP) application behaviors at the transport layer in terms of
packet size.

In summary, most of the previous studies in this area have
focused mainly on P2P and best-effort applications rather than
game applications. The traffic classification methods are hard
to implement due to some limitations including scalability and
complexity issues.

III. Statistical Characteristics

To find the appropriate features for traffic classification, we
analyzed popular game applications in Korea. In this section,
we show the characteristics of game applications at the
transport layer in terms of packet-size distributions, bytes per
second (BPS), packets per second (PPS), correlations of packet
size distributions, and overall statistics of packet sizes.

We chose game applications that are popular and ranked
within the top 20 as well as newly emerging game applications,
such as Gundam Online (GO) [32], KartRider [33], Starcraft
[34], Sudden Attack (SA) [35], World of Warcraft (WoW) [36],

Table 1. Summary of reference game applications.

Application Type Architecture Protocol Known-port

GO FPS P2P full mesh UDP 3001

KartRider Racing P2P full mesh UDP N/A

Starcraft RTS P2P full mesh UDP 6112

SA FPS P2P hybrid UDP 27888

D&F MMORPG C&S TCP 10001-10052

MS MMORPG C&S TCP 8585-8587

WoW MMORPG C&S TCP 3724

Lineage II MMORPG C&S TCP 7777

ETRI Journal, Volume 32, Number 1, February 2010 Young-Tae Han et al. 25

Dungeon and Fighter (D&F) [37], Maple Story (MS) [38], and
Lineage II [39] as shown in Table 1. These games belong to
very popular game genres such as MMORPG, FPS, RTS, and
racing. In addition, these applications use two communication
models, namely C&S and P2P. The P2P model can be further
divided into two models: full mesh and hybrid. In the full mesh
model, one peer communicates with all other peers. When
game applications adopt this model, some applications use
known port numbers, while some others do not. In our
examples, the port number of KartRider is fully unknown
because it assigns a port number randomly. In the hybrid model,
any peer can be a server, and other peers communicate with it.
This is similar to the C&S model, but the server-side IP
addresses are very dynamic compared to those in the C&S
model. In addition, sometimes the server could be a client in
the hybrid model. SA uses a hybrid model and a known port
number. For the C&S model, the server addresses are always
static. In contrast to P2P-based applications, all of our C&S-
based reference applications use known port numbers, but
some attractive port numbers like 7777 are shared by some
applications. For example, port number 7777 is used by
Lineage II, Napster, and Oracle application servers. We
collected the reference data at the border router in our campus
network with a network processor-based capture system. Our
capture system can support links up to 1 Gbps without packet
loss. The average utilization of our campus network is about
120 Mbps. To gather reference packets, we first ran these
applications at the hosts several times over 30 minutes and
collected traffic based on the IP addresses. When we ran game
applications, we killed network applications. After that, we
eliminated traffic from other applications in reference packets
so there would only be traffic from game applications in the
reference packets. To avoid an issue regarding private
information protection, we did not collect the whole lengths of
the packets. We collected 96 byte-length packets including
TCP/IP headers and some part of the user’s payload data for
verification of the classification accuracy.

Figure 2 shows the packet size distributions in the
cumulative distribution function (CDF). In presenting these
distributions, we divide 1,500 bytes, which is the maximum
transfer unit at the IP layer, into 150 bins. In this paper, inbound
and outbound are defined as follows. For the C&S model,
inbound and outbound can be easily defined using server
addresses. For the P2P model, however, it is ambiguous. For
the C&S model, inbound is defined as the direction of traffic
from the server to the client, and outbound is defined as the
direction of traffic from the client to the server. For the P2P
model, inbound is defined as the direction of the traffic from
other hosts to the host which runs the application, and
outbound is defined as the direction of the traffic from one host

Fig. 2. Packet size distribution (CDF).

0 500 1,000 1,500
0

0.5

1.0

(a) TCP inbound
Packet size (byte)

Pr
ob

ab
ili

ty

0 500 1,000 1,500
0

0.5

1.0

(b) TCP outbound
Packet size (byte)

Pr
ob

ab
ili

ty

0 500 1,000 1,500
0

0.5

1.0

(c) UDP inbound
Packet size (byte)

Pr
ob

ab
ili

ty

0 500 1,000 1,500
0

0.5

1.0

(d) UDP outbound
Packet size (byte)

Pr
ob

ab
ili

ty

D&F
MS
WoW
Lineage II

D&F
MS
WoW
Lineage II

GO
KartRider
Starcraft
SA

GO
KartRider
Starcraft
SA

to the other hosts. In the C&S model, the average of the
inbound packet sizes from a server to a client is usually greater
than the average of the outbound packet sizes from a client to a
server. Except for the C&S inbound traffic, most of the packet
sizes are smaller than 500 bytes, so it is rare to see packets with
1,500 bytes in outbound traffic. KartRider only uses 161 bytes,
56 bytes, and 171 bytes, therefore, its distribution looks like a
step function for both directions.

Figure 3 shows the BPS for inbound and outbound traffic.
In this figure, we observed that the inbound and outbound
traffic volumes are very similar in P2P-based models (GO,
KartRider, and Starcraft) except SA. For example, the BPSs of
Starcraft are 4.8 and 4.9 for the inbound and outbound
direction, respectively. However, in the C&S-based model, the
inbound and outbound traffic are asymmetric. For example,
the BPSs of WoW are 1,099.3 and 375.3 for the inbound and
outbound traffic, respectively. Also, the inbound traffic from a
server is always greater than outbound traffic from a client in
the C&S model.

Figure 4 shows the PPS for inbound and outbound traffic.
The inbound and outbound PPS of UDP- and TCP-based
game applications are quite similar. The average PPS is less
than 20. For a single connection, the PPS and BPS of UDP-
based applications are smaller than those of TCP-based
applications. To obtain the total PPS or BPS, we should
multiply the number of concurrent players in the case of P2P-
based applications.

Thus far, we have presented some traffic characteristics of
game applications in terms of packet size, PPS, and BPS. In
Figs. 3 and 4, we observed that UDP-based P2P game
applications have similar BPS and PPS patterns for inbound
and outbound traffic. The difference is quite small. Thus, UDP-

26 Young-Tae Han et al. ETRI Journal, Volume 32, Number 1, February 2010

Fig. 3. Inbound/outbound BPS.

GO KartRider Starcraft SA D&F MS WoW Lineage II0

5

10

15 ×104

B
PS

(a) Inbound

GO KartRider Starcraft SA D&F MS WoW Lineage II
0

5

10

15 ×104

B
PS

(b) Outbound

Fig. 4. Inbound/outbound PPS.

GO KartRider Starcraft SA D&F MS WoW Lineage II
0

50

100

150

200

PP
S

(a) Inbound

GO KartRider Starcraft SA D&F MS WoW Lineage II
0

50

100

150

200

PP
S

(b) Outbound

Average

Average

based P2P applications have a symmetric traffic pattern in BPS
and PPS except for the P2P-hybrid model.

We also examined the correlation of packet size distributions
between flows of the same applications. Figure 5 shows the
correlation coefficient values. In Fig. 5, correlation values of
packet size distributions are calculated between flows from the
same application in collected reference data sets. The
correlation coefficient is defined as

()()
() ()

,n n m m
nm

n m

E S S
=

Var S Var S

μ μ
ρ

− −⎡ ⎤⎣ ⎦

⋅
 (1)

where Sn and Sm are sets of random variables for flows n and m
from the same application, and µn and µm are mean values of Sn
and Sm, respectively. We observed that P2P-based applications
have very high correlation coefficient values of up to 1. This
means that the packet distributions of the same application are
almost identical for any flow. However, C&S-based
applications have lower correlation coefficient values

Fig. 5. Correlation of packet size distributions.

Starcraft SA D&F MS WoW Lineage II
0

0.2

0.4

0.6
0.8

1.0

C
or

re
la

tio
n

co
ef

fic
ie

nt

(a) Inbound

GO KartRider Starcraft SA D&F MS WoW Lineage II
0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

co
ef

fic
ie

nt

(b) Outbound

Average

Average

GO KartRider

compared to P2P applications.

We also examined the cross correlation between different
applications. The packet size distributions of some applications
are very similar and have high correlation values between these
applications. Because we cannot classify some applications due
to this high cross correlation, we classify these applications
using other statistical characteristics such as min, max, and
mode of the packet sizes. For example, D&F and SA have very
similar distributions but min, max, and mode are quite different.
In statistics, the mode is the value that occurs the most
frequently in a data set or probability distribution. In this paper,
we define Mode as a set of mode sizes for a flow that consists
of the most frequently used packet size (Mode1) to the third-
most frequently used packet size (Mode3) as (2):

{ 1, 2, 3}.Mode Mode Mode Mode= (2)

The mode converges when we get more than 250 packets. In
our experiments, we used more than 250 packets for each flow.
The consideration of frequencies makes classification more
complex so we do not consider mode frequencies.

Figure 6 shows the overall statistics in terms of packet size in
min, max, average, and mode. We plotted the statistics of 5
flows for each application from the most frequently used
packet size (Mode1) to the third-most frequently used packet
size (Mode3). For TCP-based applications, we did not include
packet lengths of 40 bytes because this size is used for
acknowledgement in TCP. If we include this size, the first
ranked mode size is 40 bytes for most TCP-based applications.
As seen in these figures, UDP-based applications have almost
identical values in min, max, and mode sizes. In particular, the
KartRider mode order is the same for every flow. For example,
the first ranked mode size is 167 bytes, the second is 56 bytes,
and the third is 171 bytes. In some cases, the third ranked mode
size is not shown for some flows, but the average packet size is

ETRI Journal, Volume 32, Number 1, February 2010 Young-Tae Han et al. 27

Fig. 6. Overall statistics of packet size.

101

102

103

104
Pa

ck
et

 si
ze

 (b
yt

e)

(a) Inbound

101

102

103

104

Pa
ck

et
 si

ze
 (b

yt
e)

(b) Outbound

Min Max Average Mode1 Mode2 Mode3

GO Starcraft KartRider SA D&F MS WoW Lineage II

D&F MS WoW Lineage II SAStarcraftKartRider GO

Min Max Average Mode1 Mode2 Mode3

almost 163 bytes for every KartRider flow. This means that
some applications like KartRider can be easily classified using
the min, max, mode, and average of the packet sizes. The
variation of these statistics is very small in UDP-based
applications. The max size of TCP-based applications is quite
dynamic for outbound traffic, but this value is around 1,500
bytes for most outbound flows. The behavior of SA is similar
to that of TCP-based applications in this respect because it uses
a hybrid communication model.

We considered the characteristics of game applications in
terms of packet size, BPS, PPS, and correlation. Note that
C&S-based game applications have more dynamic
characteristics than P2P-based game applications; however, the
min, max, mode, and average of the packet sizes and the
correlation of their distributions have quite deterministic
characteristics. Specifically, for the P2P-based game
applications, the flows from the same application have packet
size distributions that are very similar to the very high
correlation coefficient value. Consequently, these features
could be considered critical factors in classifying game
applications.

IV. ADT Classification Algorithm

In this section, we explain the proposed classification
method, which is based on a simple decision tree with few
discriminators. Prior to explaining the proposed classification
method, we choose critical discriminators to classify traffic
based on our analysis. Table 2 shows several of the critical
discriminators for our method. For example, KartRider can be
identified by using mode order, and most C&S-based

Table 2. Discriminators for classification.

Features Description

Min, max, mode, mean, distribution Packet size statistics

Mean BPS, mean PPS Transport behaviors
Source/destination address,

port number, protocol number
Flow information

applications can be identified by using only the server-side IP
address.

To compare distributions, we make reference distributions
with packet size statistics of reference applications. Each
distribution of the applications’ packet sizes is obtained using
150 bins, where the bin size is 10 bytes. To find the best
distribution fit, the widely used methods are goodness-of-fit
tests such as the chi-square and Kolmogorov-Smirmov
methods. These tests are appropriate for unbiased distributions
such as Gaussian distribution. These tests are not valid to detect
or identify biased distribution [40]. The distributions of game
applications are quite biased. For instance, several packet sizes
are used in game applications especially in P2P-based
applications as shown Fig. 2. Thus, these two methods are not
appropriate for detecting the distribution. When we use these
goodness-of-fit methods with biased distributions, many errors
occur. Therefore, the proposed method is designed based upon
a correlation-based method rather than these goodness-of-fit
methods. Our results show that packet size distributions are
highly correlated between flows of the same application. To
identify game traffic, we calculate the cross correlation
coefficient value between distributions of random flows and

28 Young-Tae Han et al. ETRI Journal, Volume 32, Number 1, February 2010

references. The cross correlation coefficient between the
sampled and reference distribution of packet sizes is defined as
ρij, given by

() ()
() ()

,
i i j j

ij

i j

E S R
=

Var S Var R

μ μ
ρ

⎡ ⎤− −⎣ ⎦

⋅
 (3)

where Rj is a set of random variables of the reference
distribution for application j, Si is a set of random variables of
the sampled distribution for flow i, and µi and µj are the mean
values of Rj and Si, respectively.

Among the selected features, some have fixed values, such
as min and max, but some others, such as mean, vary in
specific ranges. For the convenience of handling these values,
we define Dscore as

score 1 ,i j

j

D
μ μ

μ

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4)

which is the normalized distance between the means of Rj and
Si.

Using these features, we make a supervised decision tree
called the ADT because nodes can be deleted depending on the
applications. Like other decision-tree-based algorithms such as
C4.5 [41], the order of the tree nodes is optimized using the
concept of information theory in ADT. The order of nodes is
quite important because it can affect computation time and
complexity.

Here, we briefly describe information gain. The information
gain is given as follows [42]. Let us have n values for a given
feature, and let T be a set of training samples. Let S be a set of
samples, let freq(Ci, S) stand for the number of samples in S
that belong to class Ci, and let |S| denote the number of samples
in set S. The information entropy is given by

() () ()
2

1

freq , freq ,
Info log ,

k
i i

i

C S C S
S

S S=

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ (5)

where k is the number of possible classes, and Ci is the i-th
class. After T has been partitioned into Ti in accordance with n
outcomes of one attribute test X, the expected information
requirement is

()
1

Info () Info .
n

i
X i

i

T
T T

T=

⎛ ⎞⎛ ⎞
= − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ (6)

Finally, the information gain is given by

() ()Gain Info Info ().XX T T= − (7)

According to this information gain, we arrange the order of
the tree nodes. Thus, we can efficiently prune the number of
flows for classification. For example, there are 32,582 flows in
one of our tests. When we look for the candidate flows of

Phase I: For every flow:

01: If (Si
Min ∈ Rj

Min){
02: If (Si

Mode ∈ Rj
Mode){

03: If (Order(Si
Mode)== Order(Rj

Mode)){

04: If (Si
Max ∈Rj

Max){

05: If (PPS(Si) < PPSThread){
06: Store application name of j and set ρij=1 for flow i;}}}

07: Else{
08: If ((ρ(Si, Rj) > ValThread)||((2-ValThread ≥ Dscore)&&(Dscore ≥ ValThread))){

09: If ((PPS(Si) < PPSThread) && (Ctype ==P2P)){

10: Store application name of j and ρ for flow i;}
11: If ((PPS(Si) < PPSThread) && (Ctype ==C&S)){

12: If (Port number of flow i == Port number of Appj){
13: Store IP address in IPT j ;}}}}}}

Phase II: For the flow pairs and IP address:

01: If (Ctype ==P2P){

02: If (Fi ∩ FISk == ø){

03: Make a new FISk+1{Fi{Src}, Fi{Dst}} ;
04: Make a new APNT{application, ρij } for FISk+1 ; }

05: If (Fi ∩ FISk != ø){

06: If (Fi
Src ∉ FISk){

07: Add Fi
Src into FISk ;}

08: If (Fi
Dst ∉ FISk){

09: Add Fi
Dst into FISk ;

10: Add APNTk{application, ρ} ;}
11: Find max {APNT{ρ}} and application name ;
12: Identify all flow in FISk ;}

13: If (Ctype ==C&S){

14: IP and port number based classification using IP table ;}

 Fig. 7. ADT classification algorithm.

Starcraft using the min values, we find just 2,161 candidate
flows. In this set, there are 838 flows of Starcraft. We can get a
similar result when we use mode. However, using mode is
more complex than using min values because mode has more
elements.

The general classification algorithm is shown in Fig. 7. We
define Ctype which has two values depending on the
communication model, that is, P2P or C&S. The P2P model
includes fully meshed and hybrid models. Here, Rj

Min, Rj
Max,

and Rj
Mode are sets of the min, max, and mode packet sizes of

the j-th reference application, respectively. The number of
elements of Rj

Min or Rj
Max is a maximum of 2 and that of Rj

Mode
is 5. In addition, we define two threshold values, ValThread and
PPSThread. Here, ValThread Thread(0 1)Val≤ ≤ is the threshold value
of ρ and Dscore, PPSThread is the threshold value of PPS, and ρ (Si,
Rj) is the value of the correlation coefficient between Si and Rj.

As previously mentioned, the key features for classifying the
applications are dynamic depending on the application. For
example, in the C&S model, the key features are the server-
side IP address and port number. If we know these, we can
classify C&S-based game applications without error. In

ETRI Journal, Volume 32, Number 1, February 2010 Young-Tae Han et al. 29

addition, these server addresses do not change frequently.
However, P2P-based applications have different characteristics.
For P2P-based applications, the server-side IP addresses are
invalid because any host could be a server, and this server is for
temporal purposes. Thus, our algorithm uses different
procedures to classify P2P- and C&S-based applications.

Our algorithm consists of two phases. In the first phase, we
examine every flow and find the names of the candidate
applications for P2P-based and C&S-based applications. If an
application uses unique sets of min and mode values, we first
check the order of mode values and some other statistical
values such as PPS and max values. For KartRider, we classify
it using min, max, and mode values and the mode order. We
consider this a simple case. For a simple case, ADT does not
need any further procedure, so we set the ρ value as 1 to avoid
other complex procedures. The remaining unclassified flows
keep checking other statistical values such as ρ and PPS. As we
showed in the previous analysis, the distributions of packet
sizes from the same P2P-based application are quite well
correlated. ADT classifies most of the flows for fully meshed
P2P-based applications and about half of the hybrid P2P-based
applications. However, only a few flows are classified using
ADT with previous procedures and the port number. Thus,
ADT gathers the IP addresses of the game servers for
application j in the IP table (IPT j) for C&S-based applications.

In the second phase, ADT classifies applications by grouping
flows based on the correlation values for P2P-based
applications and IP addresses for C&S-based applications. For
P2P-based game applications, every flow is grouped using the
flow information set (FIS). An FIS consists of flow information,
and the flow information (Fi) is a set of Fi

Src and Fi
Dst for the

flow i. Here, Fi
Src is defined as the pair of the source address

and source port number, and Fi
Dst is defined as the pair of the

destination address and destination port number. If one element
of Fi is included in the previous FIS, this flow is grouped into
the same FIS. On the other hand, if both elements of Fi are not
included in the previous FIS, a new FIS is created. In this
manner, we make an FIS for every flow. In addition, we define
an application name table (APNT) for the FIS. In APNT, we
store the candidate application name and ρ for the FIS. Finally,
we find an application name that has a maximum ρ in APNT.
We classify other flows in the FIS as the same application. For
C&S-based applications, we simply classify them using the
IPT. The IP table contains the detected server-side IP addresses
and names of the applications.

V. Classification Results

To verify our ADT, we implemented and evaluated our
algorithm using the Perl programming language [43]. We

Table 3. Test sets.

Set Date
Duration

(min)
Number of

packets
Traffic volume

(GB)
Set 1 03-20-2008 22 7.5e7 64

Set 2 03-23-2008 11 3.4e7 26

Set 3 03-24-2008 34 2.43e8 198

Set 4 03-26-2008 28 1.67e8 91

Set 5 02-27-2008 81 3.7e6 1.7

Set 6 03-20-2008 82 3.4e6 1.6

collected the test traffic sets shown in Table 3. We gathered 526
million packets, with a total traffic volume of 382 GB. Date
and time were randomly selected.

The UDP-based traffic is quite small at our campus, so we
gathered UDP packets only in test sets 5 and 6. Due to the
storage and file size limitations on a Linux system, these sets
were split into dozens of files. Each file contains thousands of
flows, and the average capture time for each file is 1.5 minutes.
The size of a split file is 500 MB, and there are about 1K flows
that last from the start to end times within the spilt file.
Classification was performed using the test data sets shown in
Table 3. We examined every flow that has at least 250 packets.
ADT is based on packet size distributions so we need sufficient
packets for the flows. We examined a total of 106k flows in our
test sets.

As performance metrics, we used precision and recall. Given
the reference and test sets mixed with flows from game and
non-game applications, if a flow of a non-game application is
classified as a flow of a known game application with ADT, we
denote it as a false positive (FP). Similarly, if a flow of a known
game application is classified as a flow of a non-game
application with ADT, we denote it as a false negative (FN).
A true positive (TP) is the total number of application flows
that are correctly classified with ADT. Precision and recall are
given by

, .TP TPprecision recall
TP FP TP FN

= =
+ +

 (8)

The server-side IP addresses are critical to classifying C&S-
based applications, so we located them.

Figure 8 shows the number of game servers that are
identified by our ADT in the reference and test sets. We
verified these server IP addresses with known IP addresses or
collected IP addresses while we connected to each server.
Usually, the server IP addresses of a single application use the
same subnet mask. We found one subnet for D&F and MS and
two subnets for WoW and Lineage II. We classified the C&S-

30 Young-Tae Han et al. ETRI Journal, Volume 32, Number 1, February 2010

Fig. 8. Number of servers.

D&S MS Lineage II WoW
0

5

10

15

N
um

be
r o

f s
er

ve
rs

Fig. 9. Overall precision and recall.

GO KartRider Starcraft SA D&F MS WoW Lineage II
0

0.2
0.4
0.6
0.8

1.0

Pr
ec

is
io

n

(a) Precision

GO KartRider Starcraft SA D&F MS WoW Lineage II
0

0.2
0.4

0.6
0.8
1.0

R
ec

al
l

(b) Recall

Port
Cor.
ADT

Port
Cor.
ADT

based applications with collected server IP addresses by ADT.

Figure 9 shows the classification results in terms of the
precision and recall using port-number-, correlation-, and ADT-
based classifications. The port-number-based classification
uses just the known port numbers. Correlation-based
classification uses just the correlation coefficient values. In the
correlation-based method, flows are classified if the correlation
value between the reference distribution of each application
and the distribution of each flow is greater than 0.8, as in ADT.
For ADT, ValThread, Dscore, and PPSThread are empirical values.
We ran ADT several times to find these values with the best
performance. After several experiments, we determine the
optimum values of ValThread, Dscore, and PPSThread to be 0.8, 0.8,
and 50, respectively. In the case of D&F, it uses a 10001 port
number, but there are many other applications that use the same
port number and have similar packet size distribution. For this
reason, there are many false positives if we do not use IP
addresses. In this case, we can classify these flows using the
sever-side IP address. C&S-based applications can be classified
using the port number and server-side IP address. For a P2P-
based game like KartRider, the port number and IP address are
not valid for classifying flows of this application. However, it
uses several packet sizes. Thus, if we examine mode, min, and
max, it can be easily classified without other information. With

Fig. 10. Traffic volume of each application.

0 50 100 150 200 250 300 350 400

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

(MB)

GO
KartRider
Starcraft
SA
D&F
MS
WoW
Lineage II

these methods, we examined whole flows in the test sets. As
seen in Fig. 9, using only correlation-based methods is not
sufficient for classification because there are many similar
packet size distributions from different applications. Hence, it
has lower accuracy compared to port-number-based methods.
A combination of port-number-based and correlation-based
methods could produce better results than when we use the
port-number-based or correlation-based method alone.
However, this combination is not valid for classifying specific
applications when their distribution of packet sizes is very
similar to that of different applications which use the same port
number (that is, WoW, MS, and Lineage II). With ADT, P2P-
based or C&S-based applications are accurately classified.

Figure 10 shows the classified game traffic volume in each
test set. The largest portion of traffic is for Lineage II. In test
sets 5 and 6, there is only UDP traffic, so we can only see
Starcraft and SA.

VI. Conclusion

In this paper, in order to classify game traffic, we performed
a traffic analysis at the transport layer with several popular
game applications including MMORPG, FPS, RTS, and racing
games. We found some coincidences between the game
applications. One is that the inbound and outbound traffic are
quite symmetric with regard to the PPS. In addition, the mean
PPS is less than 50, and the average packet size is less than
250 bytes for P2P-based applications and outbound traffic of
C&S-based applications. The inbound (server-to-client) traffic
of C&S-based applications is quite dynamic compared to
outbound (client-to-server) traffic. Furthermore, the packet size
statistics show that some statistical features have nearly
deterministic characteristics in the min, max, mode, and mean

ETRI Journal, Volume 32, Number 1, February 2010 Young-Tae Han et al. 31

values of the packet sizes for the inbound of C&S-based
applications and both directions of P2P-based applications. In
this paper, we defined mode as a set of 5 mode sizes. We
showed that the distributions of packet sizes and modes of
game applications are quite important features for classification,
especially in P2P games. Using a few distinctive features, we
proposed a highly accurate classification method based on a
simple decision tree. As the nodes of a decision tree can be
deleted depending on the application’s characteristics we call
our tree an alternative decision tree (ADT). We showed that
ADT can classify each P2P-based application very precisely
for every flow without port numbers. However, for C&S-based
applications, it has low accuracy when the port numbers are not
considered. In this model, traffic from C&S-based applications
can be simply identified if the server side IP addresses and port
numbers are known. Thus, we used ADT to gather the sever-
side IP address for C&S-based applications using the default
port number. Using the gathered IP addresses of game servers,
ADT precisely classifies each C&S-based application. The
benefit of ADT is that it accurately classifies the traffic of game
applications using only about 1.5 minute packet traces that
contain at least 250 packets. When we examined the flows in
our test sets, there were many that had similar behaviors with
game applications. If we had more statistical information
regarding other game applications, ADT could discover more
undetected game traffic and portions of game traffic within
Internet traffic. Using ADT, network providers could precisely
find traffic volume of games, and they could control game
traffic. Furthermore, with accurate classified traffic, network
engineers could find more accurate traffic model and workload
characteristics. These could be used to design new protocols.
Our ADT will be extended toward discovering some other real-
time applications, which will be our direction for future studies.

References

[1] K. Jegers and M. Wiberg, “Pervasive Gaming in the
Everyday World,” IEEE Pervasive Computing, vol. 5, 2006,
pp.78-85.

[2] S. McCreary and K. Claffy, “Trends in Wide Area IP Traffic
Patterns: A View from Ames Internet Exchange,” Proc. 13th ITC
Specialist Seminar on Measurement and Modeling of IP Traffic,
Sept. 2000, pp. 1-11.

[3] L. Liang, Z. Sun, and H Cruickshank, “Relative QoS
Optimization for Multiparty Online Gaming in DiffServ
Networks,” IEEE Commun. Mag., vol. 43, May 2005, pp. 75-83.

[4] Game genres. http://en.wikipedia.org/wiki/Game_genres.
[5] G. Armitage, M. Claypool, and P. Branch, Networking and Online

Games: Understanding and Engineering Multiplayer Internet
Game, John Wiley and Sons, 2006, pp. 150-173.

[6] Game chart. http://www.gamechart.co.kr/.
[7] A. Kind et al., “Advanced Network Monitoring Brings Life to the

Awareness Plane,” IEEE Commun. Mag., vol. 46, Oct. 2008, pp.
140-146.

[8] V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time,” Computer Networks, vol. 31, no. 23-24, 1999, pp.
2435-2463.

[9] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable In-
Network Identification of P2P Traffic Using Application
Signatures,” Proc. 13th Int. Conf. World Wide Web, 2004, pp.
512-521.

[10] M.S. Kim, Y.J. Won, and J.W.K. Hong, “Application-Level
Traffic Monitoring and an Analysis on IP Networks,” ETRI J.,
vol. 27, no. 1, 2005, pp. 22-42.

[11] J. Erman, M. Arlitt, and A. Mahanti, “Internet Traffic
Classification Using Clustering Algorithms,” Proc. ACM
SIGCOMM Workshop Mining Network Data, 2006, pp. 281-286.

[12] T. Karagiannis et al., “Transport Layer Identification of P2P
Traffic,” Proc. 4th ACM SIGCOMM Conf. Internet
Measurement, 2004, pp. 121-134.

[13] A. Madhukar and C. Williamson, “A Longitudinal Study of P2P
Traffic Classification,” Proc.14th IEEE Int. Symp. Modeling,
Analysis, and Simulation, Sept. 2006, pp. 179-188.

[14] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:
Multilevel Traffic Classification in the Dark,” Proc. ACM
SIGCOMM, Aug. 2005, pp. 229-240.

[15] A.W. Moore and D. Zuev, “Internet Traffic Classification Using
Bayesian Analysis Techniques,” Proc. SIGMETRICS, June 2005,
pp. 50-60.

[16] A.W. Moore, “Discriminators for Use in Flow-Based
Classification,” Technical Report, Intel Research, Cambridge,
2005.

[17] M.S. Borella, “Source Models of Network Game Traffic,”
Computer Commun., vol. 23, no. 4, Feb. 2000, pp. 403-410.

[18] J. Färber, “Network Game Traffic Modelling,” Proc. 1st
Workshop Network and System Support for Games,
Bruanschweig, Germany, 2002, pp. 53-57.

[19] T. Henderson and S. Bhatti, “Modeling User Behaviour in
Networked Games,” Proc. 9th ACM Int. Conf. Multimedia, 2001,
pp. 212-220.

[20] T. Lang, P. Branch, and G. Armitage, “A Synthetic Traffic Model
for Quake3,” Proc. ACM SIGCHI Int. Conf. Advances in
Computer Entertainment Technol., Singapore, June 2004.

[21] W.C. Feng, F. Chang, and J. Walpole, “A Traffic Characterization
of Popular On-line Games,” IEEE/ACM Trans. Networking, vol.
13, no. 3, 2005, pp. 488-500.

[22] T. Henderson and S. Bhatti, “Networked Games: A QoS-
Sensitive Application for QoS-Insensitive Users?” Proc. ACM
SIGCOMM Workshop on Revisiting IP QoS: What Have We
Learned, Why Do We Care? 2003, pp. 141-147.

32 Young-Tae Han et al. ETRI Journal, Volume 32, Number 1, February 2010

[23] A. Dainotti, A. Pescapé, and G. Ventre, “A Packet-Level Traffic
Model of Starcraft,” Proc. HOT-P2P 2nd Int. Workshop Hot
Topics in Peer-to-Peer Systems, San Diego, USA, 2005, pp. 33-
42.

[24] K.T. Chen, P. Huang, and C.L. Lei, “Game Traffic Analysis: An
MMORPG Perspective,” Computer Networks, vol. 50, no. 16,
2006, pp. 3002-3023.

[25] J. Kim et al., “Traffic Characteristics of a Massively Multi-player
Online Role Playing Game,” Proc. NetGames, Oct. 2005, pp. 1-8.

[26] Internet Assigned Numbers Authority (IANA) port number list.
http://www.iana.org/assignments/port-numbers.

[27] J. But et al., “Evaluating Machine Learning Methods for Online
Game Traffic Identification,” Proc. 5th ACM SIGCOMM
Workshop on Network and System Support for Games, Technical
Report 060410C, CAIA, Apr. 2006.

[28] D.J. Parish et al., “Using Packet Size Distributions to Identify
Real-Time Networked Applications,” IEE Commun., vol. 150,
Aug. 2003, pp. 221-227.

[29] K. Tsutomu et al., “Traffic Identification for Dependable VoIP,”
NEC Technical J., vol. 1, no. 3, 2006, pp. 17-20.

[30] M. Crotti et al., “Traffic Classification through Simple Statistical
Fingerprinting,” ACM SIGCOMM Computer Commun. Review,
vol. 37, no. 1, Jan. 2007, pp. 5-16.

[31] N. Williams, S. Zander, and G. Armitage, “A Preliminary
Performance Comparison of Five Machine Learning Algorithms
for Practical IP Traffic Flow Classification,” ACM SIGCOMM
Computer Commun. Review, vol. 36, no. 5, Oct. 2006, pp. 5-16.

[32] Gundam-Online (GO). http://gundam.netmarble.net/.
[33] KartRider. http://kart.nexon.com/.
[34] Stracraft. http://www.blizzard.co.kr/starcraft/.
[35] Sudden Attack (SA). http://suddenattack.netmarble.net/.
[36] World of Warcraft (WoW). http://www.worldofwarcraft.com/.
[37] Dungeon and Fighter (D&F). http://df.hangame.com/.
[38] Maple Story (M.S). http://maplestory.nexon.net/.
[39] Lineage II. http://www.lineage2.co.kr/.
[40] L.J. Gleser and D.S. Moore, “The Effect of Dependence on Chi-

Squared and Empiric Distribution Tests of Fit,” Annals of
Statistics, vol. 11, no. 4, 1983, pp. 1100-1108.

[41] N. Williams, S. Zander, and G. Armitage, “Evaluating Machine
Learning Algorithms for Automated Network Application
Identification,” Technical Report 060401B, CAIA, Swinburne
Univ., Apr. 2006.

[42] M. Kantardzic, Data Mining: Concepts, Methods, and Algorithms,
Wiley-IEEE Press, 2003.

[43] Perl programming language. http://www.perl.org/.

Young-Tae Han received the BS degree from
Kyung Hee University, Suwon, South Korea, in
1999, and the MS degree from Information and
Communications University (ICU), Daejeon,
South Korea, in 2006. He is currently working
toward the PhD at the Department of Information
and Communications, KAIST, Daejeon, South

Korea. His research interests include network performance measurement,
multimedia traffic characterization, and traffic anomaly detection.

Hong-Shik Park received the BS degree from
Seoul National University, Seoul, South Korea, in
1977, and the MS and PhD degrees from Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in electrical
engineering in 1986 and 1995, respectively. In
1977, he joined ETRI and worked on the

development of the TDX digital switching system family, including
TDX-1, TDX-1A, TDX-1B, TDX-10, and ATM switching systems. In
1998, he moved to Information and Communications University,
Daejeon, Korea as a member of faculty. Currently, he is a professor of the
Department of Electrical and Electronics Engineering, KAIST, Daejeon,
South Korea. His research interests are network architecture, network
protocols, and performance analysis of telecommunication systems. He is
a member of the IEEE, IEEK, and KICS of South Korea.

	I. Introduction
	II. Related Works
	III. Statistical Characteristics
	IV. ADT Classification Algorithm
	V. Classification Results
	VI. Conclusion
	References

