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The pervasive game environments have activated 
explosive growth of the Internet over recent decades. Thus, 
understanding Internet traffic characteristics and precise 
classification have become important issues in network 
management, resource provisioning, and game application 
development. Naturally, much attention has been given to 
analyzing and modeling game traffic. Little research, 
however, has been undertaken on the classification of 
game traffic. In this paper, we perform an interpretive 
traffic analysis of popular game applications at the 
transport layer and propose a new classification method 
based on a simple decision tree, called an alternative 
decision tree (ADT), which utilizes the statistical traffic 
characteristics of game applications. Experimental results 
show that ADT precisely classifies game traffic from other 
application traffic types with limited traffic features and a 
small number of packets, while maintaining low 
complexity by utilizing a simple decision tree. 
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I. Introduction 

The pervasiveness of game environments [1] has activated 
an explosive growth in game traffic. In [2], it was reported that 
nearly 4% of all packets in a backbone is from only 6 popular 
games in the USA, and network computer games based upon 
P2P models are predicted to make up over 25% of LAN traffic 
by the year 2010. Game traffic has become one of the most 
dominant traffic types in current networks. Also, game services 
have quality of service (QoS) issues [3]. Attention from game 
service providers has been paid to the game industry market, as 
this service is one of the most beneficial business areas of the 
Internet. 

Game applications are divided into several genres. The most 
popular game genres are massive multiplayer online role 
playing game (MMORPG), first person shooting (FPS), and 
real-time strategy (RTS) [4]. Their traffic characteristics differ 
according to their genre. Furthermore, many game services, 
such as Starcraft and KartRider, have adopted a peer-to-peer 
(P2P) communication model. P2P models are widely used in 
many file-sharing applications. These applications have been 
highlighted during the past several years in the research of 
traffic classification and modeling due to their high traffic 
volume, but game services have not. As a result, the traffic 
characteristics of P2P game applications are little known to the 
public compared to P2P file-sharing applications. The few 
known characteristics of games include packet-size distribution 
and inter-arrival time. Generally, packet size and inter-arrival 
time are much smaller [5] than in other best-effort services 
such as HTTP and FTP. Also, games have longer connection 
times than other services. Figure 1 shows that the average 
connection time for the top 20 most popular games in Korea 
[6] is about 35 minutes. However, these characteristics are not 
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Fig. 1. Average connection time. 
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enough to classify game traffic efficiently; therefore, it is 
imperative to further investigate traffic characteristics. 

To guarantee QoS in the best-effort network, network 
management and traffic engineering are essential. For network 
management and traffic engineering, traffic classification is 
required [7]. For example, if network providers desire to 
control traffic from file-sharing P2P, malicious applications 
such as viruses and malware, and services requiring stringent 
QoS such as real-time and game services, they should classify 
traffic. With traffic classification, they can throttle or block high 
volume traffic applications or malicious applications. Also, 
traffic classification may be a core element of automated 
intrusion detection systems [8]. The classification methods 
include online and offline classification. Online classification 
determines the application type while a flow is in progress, and 
offline classification determines the application type when no 
flow is in progress. There have been many methods for traffic 
classification of Internet applications. The widely used 
methods are port-number-based and payload-content-based. 
Basically, the port-number-based method is very simple, but its 
accuracy is low, as many emerging applications do not use 
known fixed port numbers. On the other hand, the payload-
content-based method has very good accuracy. The limitations 
of this method are its complexity and scalability. Furthermore, 
there is a content protection issue. Currently, some data mining 
techniques are being used due to the limitations of these two 
methods [9]-[11]. For data mining or machine learning 
techniques [12]-[15], their accuracy varies depending on what 
features are used for classification. Furthermore, many 
previous studies [9], [12], [13] have mainly focused on P2P 
applications due to their high traffic volume and traffic 

dynamic. Little research, however, has been undertaken on 
game traffic classification in spite of its explosive growth. To 
classify applications accurately, various types of statistical data 
are required at the packet or flow level. Moore and others [16] 
defined many discriminators, but they did not discuss which 
discriminators are more useful. 

In this paper, for the design of a classification method 
focused on game applications, popular game applications in 
Korea are examined at the transport layer. Statistically salient 
characteristics are found, and these are used as key 
discriminators for traffic classification. One of our findings is 
that some applications could be simply classified using a set of 
frequently used packet sizes and its order of elements without 
complex methods. Also, we observed that distributions of 
packet sizes for the specific applications are very similar 
among them, especially in a P2P model; therefore, the 
correlation values of packet size distributions are utilized in our 
method. To design a classification method, we exploited offline 
classification. The reason is that online classification is harder 
than offline classification because only partial information is 
available. We propose a traffic classification method for 
classifying game traffic which utilizes a simple alternative 
decision tree (ADT) by reflecting statistical characteristics of 
game applications. ADT has two phases for classifying traffic. 
In the first phase, statistical data of every flow is examined, and 
the flow for the P2P model is pre-classified, or the server IP 
address for the client and server (C&S) model is gathered. In 
the second phase, flows are grouped using an IP address and 
port number pair, and these groups are then classified. The 
benefits of our method are that it does not examine user data so 
it can be released from forensic issues such as privacy 
protection, and it precisely classifies game applications with 
limited traffic features and a small number of packets up to a 
thousand packets while maintaining low complexity compared 
to conventional methods. 

The remainder of this paper is organized as follows. In 
section II, related works regarding the characterization of game 
traffic and application identification or classification are 
presented. Traffic-traced sets of reference applications and 
some salient features of game applications are described in 
section IV. Then, the proposed ADT for classifying game 
traffic is described in section IV, and experimental results are 
presented in section V. Finally, section VI concludes the paper. 

II. Related Works 

In this section, we explain previous works related to game 
traffic analysis and characterization and present traffic 
classification methods. There has been little research in game 
traffic classification; therefore, we begin by describing some 
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common classification methods. 
Previously, much attention [18]-[25] has been paid to 

investigating packet size and inter-arrival time for the analysis 
and modeling of internet traffic including game applications. In 
these works, the packet size and packet inter-arrival time are 
the main features. Many researchers have analyzed Internet 
traffic from these perspectives and have tried to find suitable 
statistical traffic models. In game applications, the average 
packet size is very small, ranging from about 20 bytes to   
200 bytes. The known distributions of packet inter-arrival time 
in [17], [18] are extreme, lognormal, and shifted Weibull 
distributions. The packet size and packet inter-arrival time are 
well modeled because traffic patterns of game applications are 
quite deterministic. The presented games are Quake [17]-[20], 
Counter-strike [18], [21], and Starcraft [22], [23]. Two of the 
three, Quake and Counter-strike, are FPS games because FPS 
games are not only very popular but also very QoS-sensitive 
applications [24]. The communication models of these games 
are P2P or C&S. Another popular game genre is MMORPG. In 
[24] and [25], the characteristics of MMORPGs, such as 
Shenzhou and Lineage, which are C&S-based applications, are 
presented. As previously mentioned, many of these works 
focus on finding proper game traffic models in terms of packet 
size and packet inter-arrival time and do not aim at classifying 
game applications. 

In studies related to traffic classification, there are two 
popular methods; port-number-based methods and payload-
content-based methods. Traditionally, application identification 
has been performed using well-known port numbers because 
most applications use a static port number. Previously, the 
IANA port number list [26] was used for traffic classification. 
However, many emerging P2P applications assign a random 
port number. Furthermore, some applications that use the C&S 
model also use a random port number assignment. This 
random assignment makes it difficult to identify applications 
using a port number. In the case of payload-content-based 
methods [9], [10], [12], to identify applications, whole or 
specific parts of the payload content should be examined. This 
method can identify applications precisely, but it has a 
scalability problem because it requires large storage and is very 
complex for finding and mapping a signature. Even though 
there are sufficient resources and we have overcome these 
problems, we cannot identify applications if there are no 
signatures or if the data is encrypted. For game services, most 
game protocols follow a closed-source, not open-source, 
proprietary design. Thus, most game protocols are not open to 
the public. For this reason, it is very difficult to classify game 
applications, and a new method to classify these applications is 
needed. 

For P2P file sharing applications, many classification 

methods based on data mining or machine learning techniques 
are used due to their large traffic volume and traffic dynamics. 
However, little research [27] tries to classify game applications 
using machine learning methods. These methods demonstrate 
good performance in classifying specific applications, but they 
are still complex to implement. Some other studies [28], [29] 
use a very simple classification method for limited applications. 
The authors in [28] identified real-time applications using 
correlation coefficient values of packet size distributions. This 
shows that even though packets are encrypted or lost, packet 
size distributions are highly correlated between those of the 
same application flows. Although the correlation coefficient 
value of packet size distributions can be considered one of the 
key parameters to identify applications, it cannot be a unique 
parameter. The authors of [29] demonstrate some voice-over-IP 
(VoIP) application behaviors at the transport layer in terms of 
packet size. 

In summary, most of the previous studies in this area have 
focused mainly on P2P and best-effort applications rather than 
game applications. The traffic classification methods are hard 
to implement due to some limitations including scalability and 
complexity issues.  

III. Statistical Characteristics 

To find the appropriate features for traffic classification, we 
analyzed popular game applications in Korea. In this section, 
we show the characteristics of game applications at the 
transport layer in terms of packet-size distributions, bytes per 
second (BPS), packets per second (PPS), correlations of packet 
size distributions, and overall statistics of packet sizes. 

We chose game applications that are popular and ranked 
within the top 20 as well as newly emerging game applications, 
such as Gundam Online (GO) [32], KartRider [33], Starcraft 
[34], Sudden Attack (SA) [35], World of Warcraft (WoW) [36],  
 

Table 1. Summary of reference game applications. 

Application Type Architecture Protocol Known-port

GO FPS P2P full mesh UDP 3001 

KartRider Racing P2P full mesh UDP N/A 

Starcraft RTS P2P full mesh UDP 6112 

SA FPS P2P hybrid UDP 27888 

D&F MMORPG C&S TCP 10001-10052

MS MMORPG C&S TCP 8585-8587

WoW MMORPG C&S TCP 3724 

Lineage II MMORPG C&S TCP 7777 
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Dungeon and Fighter (D&F) [37], Maple Story (MS) [38], and 
Lineage II [39] as shown in Table 1. These games belong to 
very popular game genres such as MMORPG, FPS, RTS, and 
racing. In addition, these applications use two communication 
models, namely C&S and P2P. The P2P model can be further 
divided into two models: full mesh and hybrid. In the full mesh 
model, one peer communicates with all other peers. When 
game applications adopt this model, some applications use 
known port numbers, while some others do not. In our 
examples, the port number of KartRider is fully unknown 
because it assigns a port number randomly. In the hybrid model, 
any peer can be a server, and other peers communicate with it. 
This is similar to the C&S model, but the server-side IP 
addresses are very dynamic compared to those in the C&S 
model. In addition, sometimes the server could be a client in 
the hybrid model. SA uses a hybrid model and a known port 
number. For the C&S model, the server addresses are always 
static. In contrast to P2P-based applications, all of our C&S-
based reference applications use known port numbers, but 
some attractive port numbers like 7777 are shared by some 
applications. For example, port number 7777 is used by 
Lineage II, Napster, and Oracle application servers. We 
collected the reference data at the border router in our campus 
network with a network processor-based capture system. Our 
capture system can support links up to 1 Gbps without packet 
loss. The average utilization of our campus network is about 
120 Mbps. To gather reference packets, we first ran these 
applications at the hosts several times over 30 minutes and 
collected traffic based on the IP addresses. When we ran game 
applications, we killed network applications. After that, we 
eliminated traffic from other applications in reference packets 
so there would only be traffic from game applications in the 
reference packets. To avoid an issue regarding private 
information protection, we did not collect the whole lengths of 
the packets. We collected 96 byte-length packets including 
TCP/IP headers and some part of the user’s payload data for 
verification of the classification accuracy.  

Figure 2 shows the packet size distributions in the 
cumulative distribution function (CDF). In presenting these 
distributions, we divide 1,500 bytes, which is the maximum 
transfer unit at the IP layer, into 150 bins. In this paper, inbound 
and outbound are defined as follows. For the C&S model, 
inbound and outbound can be easily defined using server 
addresses. For the P2P model, however, it is ambiguous. For 
the C&S model, inbound is defined as the direction of traffic 
from the server to the client, and outbound is defined as the 
direction of traffic from the client to the server. For the P2P 
model, inbound is defined as the direction of the traffic from 
other hosts to the host which runs the application, and 
outbound is defined as the direction of the traffic from one host  

 

Fig. 2. Packet size distribution (CDF). 
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to the other hosts. In the C&S model, the average of the 
inbound packet sizes from a server to a client is usually greater 
than the average of the outbound packet sizes from a client to a 
server. Except for the C&S inbound traffic, most of the packet 
sizes are smaller than 500 bytes, so it is rare to see packets with 
1,500 bytes in outbound traffic. KartRider only uses 161 bytes, 
56 bytes, and 171 bytes, therefore, its distribution looks like a 
step function for both directions.  

Figure 3 shows the BPS for inbound and outbound traffic. 
In this figure, we observed that the inbound and outbound 
traffic volumes are very similar in P2P-based models (GO, 
KartRider, and Starcraft) except SA. For example, the BPSs of 
Starcraft are 4.8 and 4.9 for the inbound and outbound 
direction, respectively. However, in the C&S-based model, the 
inbound and outbound traffic are asymmetric. For example, 
the BPSs of WoW are 1,099.3 and 375.3 for the inbound and 
outbound traffic, respectively. Also, the inbound traffic from a 
server is always greater than outbound traffic from a client in 
the C&S model. 

Figure 4 shows the PPS for inbound and outbound traffic. 
The inbound and outbound PPS of UDP- and TCP-based 
game applications are quite similar. The average PPS is less 
than 20. For a single connection, the PPS and BPS of UDP-
based applications are smaller than those of TCP-based 
applications. To obtain the total PPS or BPS, we should 
multiply the number of concurrent players in the case of P2P-
based applications. 

Thus far, we have presented some traffic characteristics of 
game applications in terms of packet size, PPS, and BPS. In 
Figs. 3 and 4, we observed that UDP-based P2P game 
applications have similar BPS and PPS patterns for inbound 
and outbound traffic. The difference is quite small. Thus, UDP- 
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Fig. 3. Inbound/outbound BPS. 

GO KartRider Starcraft SA D&F MS WoW Lineage II0 

5 

10 

15 ×104 

B
PS

 

(a) Inbound 

GO KartRider Starcraft SA D&F MS WoW Lineage II
0 

5 

10 

15 ×104 

B
PS

 

(b) Outbound 

 
 

 

Fig. 4. Inbound/outbound PPS. 
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based P2P applications have a symmetric traffic pattern in BPS 
and PPS except for the P2P-hybrid model. 

We also examined the correlation of packet size distributions 
between flows of the same applications. Figure 5 shows the 
correlation coefficient values. In Fig. 5, correlation values of 
packet size distributions are calculated between flows from the 
same application in collected reference data sets. The 
correlation coefficient is defined as 

( )( )
( ) ( )

,n n m m
nm

n m

E S S
=

Var S Var S

μ μ
ρ

− −⎡ ⎤⎣ ⎦

⋅
           (1) 

where Sn and Sm are sets of random variables for flows n and m 
from the same application, and µn and µm are mean values of Sn 
and Sm, respectively. We observed that P2P-based applications 
have very high correlation coefficient values of up to 1. This 
means that the packet distributions of the same application are 
almost identical for any flow. However, C&S-based 
applications have lower correlation coefficient values  

 

Fig. 5. Correlation of packet size distributions. 
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compared to P2P applications.  

We also examined the cross correlation between different 
applications. The packet size distributions of some applications 
are very similar and have high correlation values between these 
applications. Because we cannot classify some applications due 
to this high cross correlation, we classify these applications 
using other statistical characteristics such as min, max, and 
mode of the packet sizes. For example, D&F and SA have very 
similar distributions but min, max, and mode are quite different. 
In statistics, the mode is the value that occurs the most 
frequently in a data set or probability distribution. In this paper, 
we define Mode as a set of mode sizes for a flow that consists 
of the most frequently used packet size (Mode1) to the third-
most frequently used packet size (Mode3) as (2): 

{ 1, 2, 3}.Mode Mode Mode Mode=          (2) 

The mode converges when we get more than 250 packets. In 
our experiments, we used more than 250 packets for each flow. 
The consideration of frequencies makes classification more 
complex so we do not consider mode frequencies. 

Figure 6 shows the overall statistics in terms of packet size in 
min, max, average, and mode. We plotted the statistics of 5 
flows for each application from the most frequently used 
packet size (Mode1) to the third-most frequently used packet 
size (Mode3). For TCP-based applications, we did not include 
packet lengths of 40 bytes because this size is used for 
acknowledgement in TCP. If we include this size, the first 
ranked mode size is 40 bytes for most TCP-based applications. 
As seen in these figures, UDP-based applications have almost 
identical values in min, max, and mode sizes. In particular, the 
KartRider mode order is the same for every flow. For example, 
the first ranked mode size is 167 bytes, the second is 56 bytes, 
and the third is 171 bytes. In some cases, the third ranked mode 
size is not shown for some flows, but the average packet size is  
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Fig. 6. Overall statistics of packet size. 
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almost 163 bytes for every KartRider flow. This means that 
some applications like KartRider can be easily classified using 
the min, max, mode, and average of the packet sizes. The 
variation of these statistics is very small in UDP-based 
applications. The max size of TCP-based applications is quite 
dynamic for outbound traffic, but this value is around 1,500 
bytes for most outbound flows. The behavior of SA is similar 
to that of TCP-based applications in this respect because it uses 
a hybrid communication model.  

We considered the characteristics of game applications in 
terms of packet size, BPS, PPS, and correlation. Note that 
C&S-based game applications have more dynamic 
characteristics than P2P-based game applications; however, the 
min, max, mode, and average of the packet sizes and the 
correlation of their distributions have quite deterministic 
characteristics. Specifically, for the P2P-based game 
applications, the flows from the same application have packet 
size distributions that are very similar to the very high 
correlation coefficient value. Consequently, these features 
could be considered critical factors in classifying game 
applications. 

IV. ADT Classification Algorithm 

In this section, we explain the proposed classification 
method, which is based on a simple decision tree with few 
discriminators. Prior to explaining the proposed classification 
method, we choose critical discriminators to classify traffic 
based on our analysis. Table 2 shows several of the critical 
discriminators for our method. For example, KartRider can be 
identified by using mode order, and most C&S-based  

Table 2. Discriminators for classification. 

Features Description 

Min, max, mode, mean, distribution Packet size statistics 

Mean BPS, mean PPS Transport behaviors 
Source/destination address,  

port number, protocol number 
Flow information 

 

applications can be identified by using only the server-side IP 
address.  

To compare distributions, we make reference distributions 
with packet size statistics of reference applications. Each 
distribution of the applications’ packet sizes is obtained using 
150 bins, where the bin size is 10 bytes. To find the best 
distribution fit, the widely used methods are goodness-of-fit 
tests such as the chi-square and Kolmogorov-Smirmov 
methods. These tests are appropriate for unbiased distributions 
such as Gaussian distribution. These tests are not valid to detect 
or identify biased distribution [40]. The distributions of game 
applications are quite biased. For instance, several packet sizes 
are used in game applications especially in P2P-based 
applications as shown Fig. 2. Thus, these two methods are not 
appropriate for detecting the distribution. When we use these 
goodness-of-fit methods with biased distributions, many errors 
occur. Therefore, the proposed method is designed based upon 
a correlation-based method rather than these goodness-of-fit 
methods. Our results show that packet size distributions are 
highly correlated between flows of the same application. To 
identify game traffic, we calculate the cross correlation 
coefficient value between distributions of random flows and 
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references. The cross correlation coefficient between the 
sampled and reference distribution of packet sizes is defined as 
ρij, given by 

( ) ( )
( ) ( )

,
i i j j

ij

i j

E S R
=

Var S Var R

μ μ
ρ

⎡ ⎤− −⎣ ⎦

⋅
            (3) 

where Rj is a set of random variables of the reference 
distribution for application j, Si is a set of random variables of 
the sampled distribution for flow i, and µi and µj are the mean 
values of Rj and Si, respectively. 

Among the selected features, some have fixed values, such 
as min and max, but some others, such as mean, vary in 
specific ranges. For the convenience of handling these values, 
we define Dscore as  

score 1 ,i j

j

D
μ μ

μ

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
           (4) 

which is the normalized distance between the means of Rj and 
Si. 

Using these features, we make a supervised decision tree 
called the ADT because nodes can be deleted depending on the 
applications. Like other decision-tree-based algorithms such as 
C4.5 [41], the order of the tree nodes is optimized using the 
concept of information theory in ADT. The order of nodes is 
quite important because it can affect computation time and 
complexity.  

Here, we briefly describe information gain. The information 
gain is given as follows [42]. Let us have n values for a given 
feature, and let T be a set of training samples. Let S be a set of 
samples, let freq(Ci, S) stand for the number of samples in S 
that belong to class Ci, and let |S| denote the number of samples 
in set S. The information entropy is given by 

( ) ( ) ( )
2

1

freq , freq ,
Info log ,

k
i i

i

C S C S
S

S S=

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  (5) 

where k is the number of possible classes, and Ci  is the i-th 
class. After T has been partitioned into Ti in accordance with n 
outcomes of one attribute test X, the expected information 
requirement is  

( )
1

Info ( ) Info .
n

i
X i

i

T
T T

T=

⎛ ⎞⎛ ⎞
= − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑        (6) 

Finally, the information gain is given by  

( ) ( )Gain Info Info ( ).XX T T= −        (7) 

According to this information gain, we arrange the order of 
the tree nodes. Thus, we can efficiently prune the number of 
flows for classification. For example, there are 32,582 flows in 
one of our tests. When we look for the candidate flows of  

Phase I: For every flow:  

01:  If (Si
Min ∈ Rj

Min){ 
02:    If (Si

Mode ∈ Rj
Mode){ 

03:      If (Order(Si
Mode)== Order(Rj

Mode)){ 

04:        If ( Si
Max ∈Rj

Max){ 

05:          If (PPS(Si) < PPSThread){ 
06:            Store application name of j and set ρij=1 for flow i;}}} 

07:      Else{ 
08:        If ((ρ(Si, Rj) > ValThread)||((2-ValThread ≥ Dscore)&&(Dscore ≥ ValThread))){ 

09:          If ((PPS(Si) < PPSThread ) && (Ctype ==P2P)){ 

10:            Store application name of j and ρ for flow i;} 
11:          If ((PPS(Si) < PPSThread ) && (Ctype ==C&S)){ 

12:            If (Port number of flow i == Port number of Appj ){ 
13:              Store IP address in IPT j ;}}}}}} 
 

Phase II: For the flow pairs and IP address: 

01:  If (Ctype ==P2P){ 

02:    If (Fi ∩ FISk == ø){ 

03:      Make a new FISk+1{Fi{Src}, Fi{Dst}} ; 
04:      Make a new APNT{application, ρij } for FISk+1 ; } 

05:    If (Fi ∩ FISk != ø){ 

06:      If (Fi
Src ∉ FISk){ 

07:        Add Fi
Src into FISk ;} 

08:      If (Fi
Dst ∉ FISk){ 

09:        Add Fi
Dst into FISk ; 

10:        Add APNTk{application, ρ} ;} 
11:      Find max {APNT{ρ}} and application name ; 
12:      Identify all flow in FISk ;} 

13:  If (Ctype ==C&S){ 

14:    IP and port number based classification using IP table ;} 

 Fig. 7. ADT classification algorithm. 

 
Starcraft using the min values, we find just 2,161 candidate 
flows. In this set, there are 838 flows of Starcraft. We can get a 
similar result when we use mode. However, using mode is 
more complex than using min values because mode has more 
elements.  

The general classification algorithm is shown in Fig. 7. We 
define Ctype which has two values depending on the 
communication model, that is, P2P or C&S. The P2P model 
includes fully meshed and hybrid models. Here, Rj

Min, Rj
Max, 

and Rj
Mode are sets of the min, max, and mode packet sizes of 

the j-th reference application, respectively. The number of 
elements of Rj

Min or Rj
Max is a maximum of 2 and that of Rj

Mode 
is 5. In addition, we define two threshold values, ValThread and 
PPSThread. Here, ValThread Thread(0 1)Val≤ ≤ is the threshold value 
of ρ and Dscore, PPSThread is the threshold value of PPS, and ρ (Si, 
Rj) is the value of the correlation coefficient between Si and Rj. 

As previously mentioned, the key features for classifying the 
applications are dynamic depending on the application. For 
example, in the C&S model, the key features are the server-
side IP address and port number. If we know these, we can 
classify C&S-based game applications without error. In 
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addition, these server addresses do not change frequently. 
However, P2P-based applications have different characteristics. 
For P2P-based applications, the server-side IP addresses are 
invalid because any host could be a server, and this server is for 
temporal purposes. Thus, our algorithm uses different 
procedures to classify P2P- and C&S-based applications. 

Our algorithm consists of two phases. In the first phase, we 
examine every flow and find the names of the candidate 
applications for P2P-based and C&S-based applications. If an 
application uses unique sets of min and mode values, we first 
check the order of mode values and some other statistical 
values such as PPS and max values. For KartRider, we classify 
it using min, max, and mode values and the mode order. We 
consider this a simple case. For a simple case, ADT does not 
need any further procedure, so we set the ρ value as 1 to avoid 
other complex procedures. The remaining unclassified flows 
keep checking other statistical values such as ρ and PPS. As we 
showed in the previous analysis, the distributions of packet 
sizes from the same P2P-based application are quite well 
correlated. ADT classifies most of the flows for fully meshed 
P2P-based applications and about half of the hybrid P2P-based 
applications. However, only a few flows are classified using 
ADT with previous procedures and the port number. Thus, 
ADT gathers the IP addresses of the game servers for 
application j in the IP table (IPT j) for C&S-based applications. 

In the second phase, ADT classifies applications by grouping 
flows based on the correlation values for P2P-based 
applications and IP addresses for C&S-based applications. For 
P2P-based game applications, every flow is grouped using the 
flow information set (FIS). An FIS consists of flow information, 
and the flow information (Fi ) is a set of Fi

Src and Fi
Dst for the 

flow i. Here, Fi
Src is defined as the pair of the source address 

and source port number, and Fi
Dst is defined as the pair of the 

destination address and destination port number. If one element 
of Fi is included in the previous FIS, this flow is grouped into 
the same FIS. On the other hand, if both elements of Fi are not 
included in the previous FIS, a new FIS is created. In this 
manner, we make an FIS for every flow. In addition, we define 
an application name table (APNT) for the FIS. In APNT, we 
store the candidate application name and ρ for the FIS. Finally, 
we find an application name that has a maximum ρ in APNT. 
We classify other flows in the FIS as the same application. For 
C&S-based applications, we simply classify them using the 
IPT. The IP table contains the detected server-side IP addresses 
and names of the applications. 

V. Classification Results 

To verify our ADT, we implemented and evaluated our 
algorithm using the Perl programming language [43]. We  

Table 3. Test sets. 

Set Date 
Duration  

(min) 
Number of 

packets  
Traffic volume

(GB) 
Set 1 03-20-2008 22  7.5e7 64 

Set 2 03-23-2008 11  3.4e7 26 

Set 3 03-24-2008 34  2.43e8 198 

Set 4 03-26-2008 28  1.67e8 91 

Set 5 02-27-2008 81 3.7e6 1.7 

Set 6 03-20-2008 82 3.4e6 1.6 

 

 
collected the test traffic sets shown in Table 3. We gathered 526 
million packets, with a total traffic volume of 382 GB. Date 
and time were randomly selected.  

The UDP-based traffic is quite small at our campus, so we 
gathered UDP packets only in test sets 5 and 6. Due to the 
storage and file size limitations on a Linux system, these sets 
were split into dozens of files. Each file contains thousands of 
flows, and the average capture time for each file is 1.5 minutes. 
The size of a split file is 500 MB, and there are about 1K flows 
that last from the start to end times within the spilt file. 
Classification was performed using the test data sets shown in 
Table 3. We examined every flow that has at least 250 packets. 
ADT is based on packet size distributions so we need sufficient 
packets for the flows. We examined a total of 106k flows in our 
test sets. 

As performance metrics, we used precision and recall. Given 
the reference and test sets mixed with flows from game and 
non-game applications, if a flow of a non-game application is 
classified as a flow of a known game application with ADT, we 
denote it as a false positive (FP). Similarly, if a flow of a known 
game application is classified as a flow of a non-game 
application with ADT, we denote it as a false negative (FN).  
A true positive (TP) is the total number of application flows 
that are correctly classified with ADT. Precision and recall are 
given by 

, .TP TPprecision recall
TP FP TP FN

= =
+ +

     (8) 

The server-side IP addresses are critical to classifying C&S-
based applications, so we located them.  

Figure 8 shows the number of game servers that are 
identified by our ADT in the reference and test sets. We 
verified these server IP addresses with known IP addresses or 
collected IP addresses while we connected to each server. 
Usually, the server IP addresses of a single application use the 
same subnet mask. We found one subnet for D&F and MS and 
two subnets for WoW and Lineage II. We classified the C&S- 
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Fig. 8. Number of servers. 
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Fig. 9. Overall precision and recall. 
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based applications with collected server IP addresses by ADT. 

Figure 9 shows the classification results in terms of the 
precision and recall using port-number-, correlation-, and ADT-
based classifications. The port-number-based classification 
uses just the known port numbers. Correlation-based 
classification uses just the correlation coefficient values. In the 
correlation-based method, flows are classified if the correlation 
value between the reference distribution of each application 
and the distribution of each flow is greater than 0.8, as in ADT. 
For ADT, ValThread, Dscore, and PPSThread are empirical values. 
We ran ADT several times to find these values with the best 
performance. After several experiments, we determine the 
optimum values of ValThread, Dscore, and PPSThread to be 0.8, 0.8, 
and 50, respectively. In the case of D&F, it uses a 10001 port 
number, but there are many other applications that use the same 
port number and have similar packet size distribution. For this 
reason, there are many false positives if we do not use IP 
addresses. In this case, we can classify these flows using the 
sever-side IP address. C&S-based applications can be classified 
using the port number and server-side IP address. For a P2P-
based game like KartRider, the port number and IP address are 
not valid for classifying flows of this application. However, it 
uses several packet sizes. Thus, if we examine mode, min, and 
max, it can be easily classified without other information. With  

 

Fig. 10. Traffic volume of each application. 
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these methods, we examined whole flows in the test sets. As 
seen in Fig. 9, using only correlation-based methods is not 
sufficient for classification because there are many similar 
packet size distributions from different applications. Hence, it 
has lower accuracy compared to port-number-based methods.  
A combination of port-number-based and correlation-based 
methods could produce better results than when we use the 
port-number-based or correlation-based method alone. 
However, this combination is not valid for classifying specific 
applications when their distribution of packet sizes is very 
similar to that of different applications which use the same port 
number (that is, WoW, MS, and Lineage II). With ADT, P2P-
based or C&S-based applications are accurately classified. 

Figure 10 shows the classified game traffic volume in each 
test set. The largest portion of traffic is for Lineage II. In test 
sets 5 and 6, there is only UDP traffic, so we can only see 
Starcraft and SA. 

VI. Conclusion 

In this paper, in order to classify game traffic, we performed 
a traffic analysis at the transport layer with several popular 
game applications including MMORPG, FPS, RTS, and racing 
games. We found some coincidences between the game 
applications. One is that the inbound and outbound traffic are 
quite symmetric with regard to the PPS. In addition, the mean 
PPS is less than 50, and the average packet size is less than  
250 bytes for P2P-based applications and outbound traffic of 
C&S-based applications. The inbound (server-to-client) traffic 
of C&S-based applications is quite dynamic compared to 
outbound (client-to-server) traffic. Furthermore, the packet size 
statistics show that some statistical features have nearly 
deterministic characteristics in the min, max, mode, and mean 
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values of the packet sizes for the inbound of C&S-based 
applications and both directions of P2P-based applications. In 
this paper, we defined mode as a set of 5 mode sizes. We 
showed that the distributions of packet sizes and modes of 
game applications are quite important features for classification, 
especially in P2P games. Using a few distinctive features, we 
proposed a highly accurate classification method based on a 
simple decision tree. As the nodes of a decision tree can be 
deleted depending on the application’s characteristics we call 
our tree an alternative decision tree (ADT). We showed that 
ADT can classify each P2P-based application very precisely 
for every flow without port numbers. However, for C&S-based 
applications, it has low accuracy when the port numbers are not 
considered. In this model, traffic from C&S-based applications 
can be simply identified if the server side IP addresses and port 
numbers are known. Thus, we used ADT to gather the sever- 
side IP address for C&S-based applications using the default 
port number. Using the gathered IP addresses of game servers, 
ADT precisely classifies each C&S-based application. The 
benefit of ADT is that it accurately classifies the traffic of game 
applications using only about 1.5 minute packet traces that 
contain at least 250 packets. When we examined the flows in 
our test sets, there were many that had similar behaviors with 
game applications. If we had more statistical information 
regarding other game applications, ADT could discover more 
undetected game traffic and portions of game traffic within 
Internet traffic. Using ADT, network providers could precisely 
find traffic volume of games, and they could control game 
traffic. Furthermore, with accurate classified traffic, network 
engineers could find more accurate traffic model and workload 
characteristics. These could be used to design new protocols. 
Our ADT will be extended toward discovering some other real-
time applications, which will be our direction for future studies.  
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