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We graft the volatility clustering in empirical financial time series into the Equiluz and
Zimmermann model (EZ model), which was introduced to reproduce the herding behaviors of
a financial time series. We examine the universality of the grafting methodology, which is one
similar kind of sorting method that has been used to copy the nonlinear correlation structure
of the real financial time series and to dress with it the model-based time series. According
to the previous work, our grafting method proved that the nonlinear correlation structure of
a herding model can be improved. In particular, we expand the same methodology to the
high frequency financial time series and confirm that an improvement is achieved. Based on
this result, we claim that a gap between real financial data and a model-based one can be
narrowed.

PACS numbers: 89.75.-k, 89.65.Gh, 87.23.Ge

I. INTRODUCTION

In recent years, much attention of physicists has moved to fluctuations observed in
the financial markets [1, 2], because fluctuations have much information about the inter-
action structure among a system’s constituents. From the view of complex systems which
are composed of many constituents, interactions among elements may generate long-range
temporal/spatial correlations in financial markets. So far, to analyze financial markets [3–
5], various models and theoretical approaches have been developed. Important examples
are percolation models and minority games and their variants. Among them, a dynamic
version of the static percolation model, the so-called EZ herding model, has been pro-
posed [6]. In real terms, a financial market is composed of thinking atoms, for example,
agents. And they are playing in the market via various investment portfolios and strategies
in a very complicated manner. These facts account for the complexity of financial markets.
Although suggested herding models well describe possible interactions among traders in
a market, there is a limitation in catching a nonlinear correlation structure observed in
real financial time series. For example, the magnitude of the returns in the EZ herding
model does not show a long-range correlation. To achieve long-range temporal correlation,
different methods have been developed until now while one dynamic interaction has been
introduced [7], another dynamic interaction was introduced in a different way. But these
dynamic interaction functions do not play their roles very well. To improve this limita-
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tion, the previous work [8] proposed the grafting methodology, and this is better than the
dynamic interaction functions.

In this paper, we will apply the grafting method to financial indices, in particular
to the EUR-USD and USD-JPY exchange rates, and more importantly, to investigate the
universality of our grafting method. Two financial databases are quoted using min-by-min
tick data. First, the EUR-USD exchanges cover the period of the first quarter in 2008, and
the USD-JPY exchanges cover the period of the first quarter in 2008, also. From these
data, we investigate the nonlinear temporal correlations and graft them into the time series
generated from the naive EZ model and its modified version. The latter was suggested for
sustaining the cluster structure formed among agents when they place their buying/selling
orders.

The organization of this paper is as follows. In Section II, the so-called stylized facts,
such as the fat-tailed distribution of returns and long-range correlation of absolute returns,
will be analyzed with our databases. The magnitude of nonlinear correlations between price
fluctuations, by increasing quotation time lags, is examined in terms of the scaling of the
moments for the following three databases: real financial indices, the naive EZ model data,
and the modified EZ model data. In Section III, the result of our findings is presented. The
final section presents the concluding remarks.

II. THEORETICAL BACKGROUND

First of all, we define the return as

R(t, τ) ≡ log P (t + τ) − log P (t), (1)

where τ is the lag time. We use the geometric returns for the multi-period time series.
To avoid differences in the magnitude of price fluctuations, we take the normalized return
r(t, τ) as

r(t, τ) ≡
R(t, τ) − 〈R(t, τ)〉

σ(t, τ)
, (2)

where σ(t, τ) is the standard deviation of returns R(t, τ).
Figure 1 shows the price fluctuations of the time series. Both time series exhibit

a stable pattern because of the normal market situation at that time. Figure 2 shows
the positive and negative complementary cumulative distribution of r(t, τ) for τ = 1 min.
Now, we check the nature of the distribution of r(t, τ) with an increase in the time scale
τ . The central regime of returns exhibits a power-law form in Figure 2. The exponents of
both time series are near the stable Levy regime 0 < α < 2 while the tails are not in the
Levy regime. Since these are short-period databases, the exponents are not in Levy regime
exactly. But the two databases follow power-law behavior rationally. The tail behavior
shows a truncated Levy distribution. Therefore, it is worthwhile to find the convergence of
the Gaussian distribution by increasing the time scale τ . In Figure 3, from 1 min up to 100
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FIG. 1: Normalized returns are presented for the (a) EUR-USD and (b) USD-JPY exchanges.
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FIG. 2: The complementary cumulative distribution functions P (r ≥ x) for: (a) the positive tails,
and (b) the negative tails.

min, the return of the EUR-USD exchange rate sustains its functional form of distribution of
returns. This is a result of the fact that the central region is in the Levy stable distribution.
The USD-JPY exchange data shows the same pattern, and this is exhibited in Figure 4.
The limited size of the databases restricts the investigation into further long time scales.
We investigate the temporal correlation between successive returns in this section. This
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FIG. 3: The complementary cumulative distribution functions P (r ≥ x) of EUR-USD exchange is
presented for: (a) the positive tails, and (b) the negative tails.
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FIG. 4: The complementary cumulative distribution functions P (r ≥ x) of returns of USD-JPY
exchange is presented for: (a) the positive tails, and (b) the negative tails.

underpins the clustering volatility. To this end, we define the autocorrelation function as

C(τ) ≡
〈|r(t + τ)||r(t)|〉 − 〈|r(t + τ)|〉〈|r(t)|〉

σ(t + τ)σ(t)
, (3)

where τ denotes the lag time. Figure 5 shows the long-range feature of absolute returns
for our two databases, the EUR-USD and USD-JPY exchange rates. The exponents are,
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FIG. 5: Autocorrelation functions of absolute returns of two databases, the EUR-USD and USD-JPY
exchanges are shown.

respectively, given as 0.23 and 0.20 for the two databases. As shown in the inset of Figure
5, the shuffled returns break down all inherent correlations between successive returns.

Let us compute moments over the different time lags. We use the quotation time t
not to be overlapped to avoid a short-range correlation. First, we define the moments of
the normalized returns distribution as

µk ≡ 〈|r|k〉. (4)

We investigate the scaling behavior shown in Figure 4 concerning scaling of the moments.
As shown in Figure 6, we examine the convergence of the distribution to the Gaussian
distribution in terms of scaling of the moments, as the time scale τ increases. The EUR-
USD and USD-JPY exchange rates have explicit similarity. This may be due to the stable
market situation at that time. This verification shows a clear behavior of slow convergence
to the Gaussian distribution as the time scale τ increases.

We can show the property of real time series by a graph, and this property appears
clearly in the numerical values. The numerical values can be found in Table I. According
to the table, real time series have long-range correlations based on statistical findings. In
addition, we have checked that the alternative hypothesis of the Jarque-Bera test about
returns is satisfied at the significant level 0.05 over all lag times concerned. The Jarque-
Bera statistic is defined as

JB ≡
6

n

(

S2 +
(K − 3)2

4

)

, (5)

where S denotes the sample skewness and K denotes the sample kurtosis. In statistics, the



240 STATISTICAL BEHAVIOR OF . . . VOL. 48

EUR-USD exchange rate

τ Mean Standard Deviation Kurtosis Skewness Jarque-Bera

1min 7.09 × 10−7 1.61 × 10−4 31.94 0.64 3.50 × 106

5min 3.54 × 10−6 3.52 × 10−4 16.31 0.29 1.48 × 105

20min 1.42 × 10−5 6.86 × 10−4 11.02 −0.21 1.34 × 104

50min 3.54 × 10−5 1.10 × 10−3 8.89 0.08 2.89 × 103

100min 7.09 × 10−5 1.50 × 10−3 6.95 −0.14 6.54 × 102

USD-JPY exchange rate

τ Mean Standard Deviation Kurtosis Skewness Jarque-Bera

1min −8.50 × 10−7 2.64 × 10−4 30.41 −0.33 3.13 × 106

5min −4.25 × 10−6 5.52 × 10−4 20.16 −0.26 2.46 × 105

20min −1.70 × 10−5 1.00 × 10−3 9.99 −0.13 1.02 × 104

50min −4.25 × 10−5 1.70 × 10−3 9.29 −0.02 3.29 × 103

100min −8.50 × 10−5 2.3q0 × 10−3 6.02 −0.14 3.83 × 102

TABLE I: Statistics of the EUR-USD and USD-JPY exchange rates.
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FIG. 6: The scaling of moments is presented for: the (a) EUR-USD, and (b) the USD-JPY ex-
changes.

Jarque-Bera test is a goodness of the fit measure of departure from the normality based on
the sample kurtosis and skewness.
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FIG. 7: The complementary cumulative distribution functions of returns generated by the EZ
herding model: (a) the naive EZ model, and (b) the modified EZ model.
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FIG. 8: The scaling of moments is presented for: (a) the naive EZ model, and (b) the modified EZ
model.

III. NUMERICAL RESULTS

Fundamental modeling procedure follows the Equiluz and Zimmermann model
logic [6]. In detail, we consider a system composed of N agents, represented by nodes
in a network where N = 10000. The state of agent l is represented by φl = 0,+1,−1
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FIG. 9: The scaling of moments is presented for: (a) the naive EZ model, and (b) the modified EZ
model, which are both grafted with nonlinear correlations of real returns.

corresponding to an inactive state φl = 0 and two active states φl = +1, φl = −1. φl = 0
represents waiting, φl = +1 represents buying, φl = −1 represents selling. Agents can
be isolated or connected through links forming a cluster. The nodes(agents) in the same
cluster share the same information. Initially, all N agents are isolated, and each agent is
regarded as a cluster with size one. The network of links evolves dynamically in following
way:

(1) At a time step t, an agent j with its cluster is selected at random.
(2) With probability a, the state of j becomes active by randomly choosing the state

1 or -1, and instantly all agents belonging to the same cluster follow this same action by
imitation. The aggregate state of the system si = s(ti) = Σl=1,Nφl and the total size of
cluster are computed. After that the cluster is broken up into isolated agents, removing all
links inside the cluster, and resetting their state.

(3) With probability (1-a), the state of j remains inactive (φj = 0) and, instead, a
new link between agent j and any other agents from the whole network is established.

This process is repeated from step (1). Step (3) describes how an agent disperses
information to other agents in terms of a linking mechanism, by which a cluster grows.
All agents in the same cluster share the same information. Herding behavior then appears
in the market. The price P evolves as P (ti + 1) = P (ti) exp(si/λ), where λ denotes the
market liquidity. And the return is defined as R(ti) = ln[P (ti)]− ln[P (ti−1)]. The modified
version is governed by β = 0.01. β denotes the fraction of breaking-up of an activated
cluster. This condition leads to a less fat-tailed distribution by increasing the probability
of selecting smaller clusters instead of forming a larger cluster. The parameter a controls
the rate activity/dispersion in the EZ herding model, while the parameter β controls the
rate of breaking-up of an activated cluster in the modified EZ herding model [8]. Figure 7
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shows the complementary cumulative distribution of those generated returns. As shown on
the two graphs, the power-exponent is changed by about 1. Figure 8 shows the tendency
of convergence of the distribution of returns to a Gaussian distribution as the time scale
τ increases because of the independence of consecutive transactions. Therefore, there is
no clear existence of volatility clustering. To see the nonlinear correlations, it is necessary
to take a smaller value of β than above. We graft the pattern of long-range correlations
of real financial dynamics into the generated return by simulation. Because the structure
of nonlinear correlations is defined as the order of returns, grafting methodology is not
a simple shuffling of the data but gives real market structure to the generated data by
simulation. Therefore, this follows the next procedure. In order to attach the original
structure, the arrangement of generated returns is reordered according to the order of real
returns. As shown in Figure 9, the grafted time series have the original nonlinear correlation
of the returns, the data generated by the grafting method is more strongly related with
reality than the data generated by a simulation. Figure 9 shows that the distribution
functions of the EZ model based on grafted returns have slower convergence to Gaussian
behavior than the non-grafted data in Figure 8. Because the grafted time series have the
correlation pattern of real structure, there is a clear tendency of convergence to the Gaussian
distribution in terms of the scaling of moments. But Figure 9 shows a clearer tendency of
slow convergence than the previous work [8]. Because we use more high frequency data in
this work rather than that work, this property appears analytically. This may be due to
the robust market structure in the shorter time resolution.

IV. CONCLUSION

In conclusion, we have proved that the empirical property of short-period real returns
is different from those noted in other works [7, 9–11]. We found that the real time series
follow the power-law. As the lag time τ increases, the power-law scaling is willing to keep on
own property. However, the generated returns by simulation have a collapse of the power-
law scaling into a single curve as the lag time τ increases. To improve the convergence of
the generated data to Gaussian behavior, we proposed two methods: which are the grafting
methodology and the modified EZ model. The former improved this problem. But the
latter only made the result have a less fat-tailed distribution. By grafting the nonlinear
correlation structure of short-period real time series to the simulated returns, we got a
slow convergence to a Gaussian behavior in terms of scaling moments. Through this work,
we found that the grafting methodology is useful for application to a lot of financial time
series. This is a section of universality property. Therefore, this algorithm of long-range
correlations can be useful for generating an ensemble of databases which can be used to
put a price to various derivatives in terms of Monte-Carlo simulation. Also, based on our
surrogating methodology, we can attempt to classify financial securities in terms of the
nonlinear correlation structure.
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