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SUMMARY

In this paper, an obstacle avoidance method for wheeled mo-
bile robots is proposed, based on selection of the local target
points of robot’s movement called “via-points” which are
defined in a navigation space, generated by taking into con-
sideration a smooth robot motion. The proposed algorithm
utilizes a fuzzy multi-attribute decision-making method in
which three fuzzy goals are defined to achieve successful
robot navigation by deciding the via-point the robot would
proceed at each control step. Via-point is defined as the local
target point of a robot’s movement at each decision instance.
Three fuzzy goals to achieve successful robot navigation
are defined. At each decision step, a set of the candidates
of a next via-point in a 2D navigation space is constructed
by combining various heading angles and velocities. Given
the fuzzy goals, the fuzzy decision making enables the
robot to choose the best via-point among the candidates. An
efficient scheme for local minimum recovery from trapped-
in situation is also provided. A series of simulations has been
performed to study the effects of associated navigation para-
meters on the navigation performances. The method has been
implemented on an actual mobile robot and experimented
in real environments. Results from a series of simulations
and experiments conducted in real environments show the
validity and effectiveness of the proposed navigation method.

KEYWORDS: Reactive navigation; Mobile robot; Via-point
selection; Fuzzy decision-making; Multi-attribute decision-
making.

I. INTRODUCTION

Sensor based navigation has been considered as one of the
key features for mobile robots in a complex and dynamically
changing environments, because it controls the mobile
robot in an on-line manner utilizing instantaneous sensor
measurements. Some of these developments relevant to this
work are summarized as follows: Force field based obstacle
avoidance schemes utilized a virtual repulsive force applied
by obstacles and a virtual attractive force by the target.!:?
This early study was a simple and efficient approach, which is
still widely followed.? However, finding the force coefficients
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influencing the velocity and heading angle is often found to
be difficult. Similar approaches like electrostatic potential
field* are proposed and extended to dynamic environments.

Fuzzy logic approach has an advantage in that it deals with
various situations without analytical model of environments.
Sensor-based navigation methods using fuzzy control in
indoor environments have been proposed, and constructing
an efficient knowledge base has been a major issue.>~® These
approaches, however, require a large number of fuzzy rules
which should be known a priori or acquired empirically.

Neural network is another way of implementing intelligent
navigation that is inherently reactive to sensor inputs
due to its structure that relies on the weights trained
from simulations.”~!! However, training of neural networks
usually requires an enormous amount of simulations. Neuro-
fuzzy based approaches'? 13 that incorporate a fuzzy logic’s
linguistic expression and neural network’s learning capability
have been presented also.

Behavior-based navigation has been considered as another
promising approach in building intelligent mobile robots.
Robot control system is decomposed into task achieving
behaviors rather than functional modules, and focus is
made on perception-action reactivity.'* Each one of multiple
behaviors reacts to sensor input based on a particular concern
of the navigator.!*!516 Some researchers have studied
the dynamics of behaviors.!” However, selecting a single
behavior in a situation has turned out to be not effective, since
unnecessary switching of behaviors is observed in some other
situations and the information regarding other behaviors is
not available once a behavior is selected. As an improvement,
behavior fusion methods'® ! have been proposed as solutions
for these problems, and fuzzy reasoning has been used in
fusing the outputs of multiple behaviors.

We present a new obstacle avoidance method for mobile
robots using fuzzy decision-making theory. In our previous
study,20 we have conducted a series of simulation studies,
including effects of various fuzzy parameters, to show the
feasibility of its application in real navigation. In this paper,
the parameter study has been conducted to observe how a
robot’s behavior can be controlled by navigation parameters,
and the scheme is implemented in the real world navigation.
The robot navigation problem is modeled as decision-making
of the most-fit via-point for the next time step to satisfy its
navigation goal. Considering the robot’s motion capability, a
set of robot’s next step motion candidates is designed. Based
on the sensory information, a goal attainments level of each of
next step motion candidate for a given set of navigation goals
is evaluated. And then, the fuzzy decision-maker selects the
most-fit via-point, among the set of motion candidates, which
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best satisfies multiple navigation goals. Since fuzzy decision-
making can generate the optimal compromise between even
conflicting objectives, this approach can guide the robot
to achieve often conflictive, two navigation goals: obstacle
avoidance and target point reaching. The concept of this
approach is similar to choosing the best place for the next
footstep in mountain climbing or trekking.

This approach differs from conventional approaches in
following aspects: First, the algorithm does not include
a set of numerous fuzzy IF-THEN rules but uses a few
fuzzy goals in the robot control. Second, we make the
control of the mobile robot with non-holonomic constraints
easier by considering the smooth paths at the stage of
constructing the via-point candidates. Third, this method
can be considered as a behavior-fusion method, and each
fuzzy goal can be considered as a behavior. However, the
proposed method has a completely different structure with
the conventional behavior-fusion methods'>'* in that it
considers every motion candidate in decision-making, while
other methods just fuse the outputs of multiple behaviors
using fuzzy reasoning.

Like other approaches, this approach also requires a
series of navigation parameters to be tuned for a successful
navigation. While a series of well selected parameter
values enables a robot to navigate successfully in numerous
environments, values poorly selected causes the robot &
collide with surrounding objects. A parametric study shows
how each parameter affects the performance of navigation.
The method includes a solution of the local minimum
problem as well. A concept of virtual target is introduced
to enable the robot to escape from a trapped-in situation.
Results of real world navigation show the effectiveness and
the validity of the proposed algorithm.

II. MOBILE ROBOT AND NAVIGATION
ENVIRONMENTS

Robot navigation in this paper is based on the wheeled mobile
robot with two driving wheels. The mobile robot LCAR?!
developed in the authors’ laboratory is used as a test bed. The
robot has octagonal cylinder shaped body and two driving
wheels at the left and right side whose axis pass through the
robot’s body center. The robot is 70 cm wide both from left
to right and from front to rear.

The study is constrained to 2D indoor environments,
where a robot has no a priori knowledge of the obstacles
in its environment. However, it is assumed that credible
information of robot position can be acquired from dead
reckoning or other localization methods, during its navigation
from the start position to the target position. A ring of total
18 ultrasonic sensors is installed around the front side of the
waist to detect obstacles. Each sensor is spaced 11.25 degree
apart, and the whole sensor set covers slightly more than
190 degrees.

An elaborate robot simulation model has been developed
based on their sonar sensor model and its correctness has
been verified in our previous research.?? The robot simulation
model uses Kuc and Siegel’s analytic ultrasonic sensor
model?? that is verified and widely used.

Mobile robots
III. NAVIGATION USING OPTIMAL VIA-POINTS

II1.1. Overview of the proposed method

The proposed method models robot navigation as decision-
making among the robot’s numerous possible paths. Unlike
the conventional approach that guides a robot’s heading angle
and velocity to steer the robot, this approach chooses the
most appropriate path among the via-point candidates that
are pre-designed smooth paths considering the robot’s motion
capability and constraints.

For arobot like LCAR, a smooth path can be generated by
drawing an arc from a point on a line that passes through
centers of two driving wheels. Considering the robot’s
configuration and constraints, like wheel span and maximum
speed and turning radius, a series of smooth robot paths can
be designed, as shown in Fig. 1. Robot motion is periodically
controlled, and the intermediary target position along its path
at the next control period is defined as a via-point. Thus,
the robot navigation problem can be modeled as selecting
optimal via-points to achieve its navigation goals. Basic robot
navigation goals can be summarized as: 1) obstacle avoidance
and 2) reaching the target position. Based on these navigation
goals, an appropriate mathematical decision-making scheme
is required to construct the navigation algorithm. Fuzzy
decision-making can be considered as a good solution to
this, because fuzzy logic enables us to implement our natural
language based understanding in control systems. Fig. 2
shows the structure of the proposed navigation algorithm.

I11.2. Fuzzy decision making

Bellman and Zadeh?* considered a classical model of a
decision and suggested a model for decisio-making in a fuzzy
environment. They considered a decision-making process in
which the goals and/or the constraints are fuzzy in nature.
According to their formulation, objective functions (or goals)
and constraints can be characterized by their membership
functions. The decision in a fuzzy environment can be

target point
X
oy(p. vy)

X

<+— via-point
candidates

0 '

Fig. 1. Candidates of next via-points of a wheeled mobile robot: A
pair of path curvature and linear velocity, (p;, v;) determines the
position of a next via-point candidate, o0;;.
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Fig. 3. The concept of fuzzy decision-making: Decision can be
considered as the intersection of fuzzy goals.

considered as the intersection of fuzzy objective functions
and fuzzy constraints. Fig. 3 describes the pictorial concept
of fuzzy decision making.

Multi Attribute Decision-Making (MADM)? deals with
decision-making in a discrete decision space. Let X =
{x1,...,x,} be the set of decision alternatives, G i (=
1,...,m) be the fuzzy sets representing fuzzy goals. When

the attainment of the goal G; by alternative x; can be

obstacle
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expressed by the degree of membershipu(;j (x;), the decision
set D can be defined as the intersection of all fuzzy goals as

follows:

D=G6,nG,Nn --- NG, (1)

Then, we select the x; with the largest degree of
membership in D as the optimal alternative.

I11.3. Navigation goals

The most basic navigation goals for a mobile robot can be
summarized as (i) obstacle avoidance and (ii) target point
reaching. These goals can be expressed linguistically as
(i) to place enough distance from obstacles, and (ii) to
proceed toward the target point. The first goal of obstacle
avoidance can be broken down into two linguistic goals:
(1) To maintain a certain distance from the nearest obstacle,
and (2) To maintain a certain distance level from the
surrounding obstacles. The target point reaching goal can
be more objectively described as (3) To proceed to a position
closer to the target point.

In defining these linguistic goals as mathematical
description, we can utilize sensory information from obstacle
detection sensors and a robot’s relative position to the target
point, as shown in Fig. 4. Three linguistic goals above can
be defined in mathematical expression as follows:

G] . U:‘lin > C]

Gy: FF < Cy 2)
G3 . l);karg < C3

where

.. normalized minimum range data (= Upin/Rmax),

F¥ : normalized repulsive potential exerted by the
obstacles,

target point

0y : current robot position

0, 5: robot position at time (#-3)

Uy : range data of k-th ultrasonic
sensor

Fig. 4. Sensory information on the environment with an ultrasonic sensor array: The mobile robot, ‘LCAR’ has 18 ultrasonic sensors

around its body.
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Dy, normalized distance from a via-point candidate to

the target position,

and Cy, C; and Cj are the constants whose values represent
the designer’s intention for the decision-making process.

Whereas the fuzzy goal G, ignores all other useful sensor
information except the nearest obstacle, the fuzzy goal G,
utilizes entire sensor readings using the concept of repulsive
potential. The normalized repulsive potential F here is
defined by:

1% Ry — U,
oL Z ( &) 3)

T
N k=0 Rmax

where Uy represents the range data of the k-th sensor, and Nj
is total number of ultrasonic sensors. F;* can be interpreted
as the area occupied by the obstacles inside the sensing range
of ultrasonic sensors.

Because the distance from a via-point candidate to the
target point changes drastically according to the robot
position in the environment, the goal would rather be
expressed by a relative distance among via-points than by
an absolute value. Thus, even though G3 is expressed as
an inequality with a constant C3, normalized distance Dy,
is calculated relatively. The via-point relatively closer to
the target point than others gets higher goal attainment.
Normalized distance is defined as:

x Dtarg - (Dtarg)min
e (o4 [(Dtarg )max - (Dtarg)min]

(¢ >1) “4)

where, Dy, represents the distance to the target point from
a Via'pOint and (Dtarg)max and (Dtarg)min represent maximum
and minimum of distance to target point among via-points,
respectively. The value « is to adjust the distribution of D,
of via-points over its [0, 1] range. We can change the desirable
level of membership using the constant Cs.

Using the exponential sigmoid function, as shown in Fig. 5,
we define the membership function of goals G, G, and G3

Hai
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0.5
0.0

Hao
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0.5
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1.0
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0.0

Fig. 5. Membership functions for three fuzzy goals.
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as follows:
(xi) :
ne \Xxi) =
¢ 1+ expl—s; - Upn(xi) — C)]
(x)=1 1 5
mg,\xi) =1 —
¢ T+expl—s, - (Fry—Cl )
1
g, (xi) =1

1 expl—s3(Dyy(xi) — C3)]

where x; represents i-th via-point candidate and s, s, and s3
appropriate factors which affect the sensitivity (or slope) of
the exponential sigmoid functions.

1114. Goal evaluation and sensor prediction
The evaluation of memberships for G; and G, is based
on the ultrasonic sensor range data. We can have range
data at the current robot position, however, not for the via-
point candidates yet because they are candidates for the
future motion. Thus, we need to predict sensor data for via-
point candidates to evaluate goal attainments for two fuzzy
goals. Ultrasonic range data for a via-point candidate can be
constructed from current sensor data using a sensor model.
The sensor model utilizes coordinate transform between a
robot’s current posture (position and orientation) and that
of a via-point candidate. Fig. 6 describes how the sonar
range data for a via-point candidate is predicted from the
current range data. Predicted sensor data contains errors
and uncertainties due to the normal surface assumption and
unforeseen obstacles out of current sensing range. Thus, the
traveling distance for via-point candidates should be properly
selected considering the maximum sensing range of sonar.
Now since we can select the optimal via-point, we have
goal attainments of each via-point candidate using predicted
sensor data and robot-to-target distance. From equation (1),
the membership of the decision set can be expressed using
min-max operation as follows:

A MGZ ANRRIA Mcm (6)

predicted sonar
scan data at a via-
point candidate
obstacle ’
{1 /
“

current sonar
scan data

Fig. 6. Prediction of ultrasonic sensor range data (solid line: robot
in current position; dotted line: robot in a via-point candidate).



Mobile robots

571

Gioal
attamments

PI f‘ 5\
: &,
() Heay; T F
7 oy, B8 &
Uy, ” b ”{'J’(‘ —
L'}n(f_r' tre) I
d'lr-'fg_.' |’1"—)

Fig. 7. Surface of fuzzy goal attainments over a decision space: Heading angle changes (or path curvature) and velocities constitute a
decision space for navigation. Each intersection of a grid in the surface represents a via-point. u(D) = u(G1) A u(Gy) A u(G3). And the
highest point in the decision space, the highest peak in p(D), becomes the best via-point for the given fuzzy goals.

Among the via-point candidates, one with the highest value
of 1y is selected as the optimal alternative. Fig. 7 shows
the principle of this fuzzy decision-making procedure graphi-
cally. Heading angle change (equivalent to path curvature)
and velocity constitute a two-dimensional decision space
for robot navigation. Every intersection of a grid in Fig. 7
represents a via-point candidate. The level of attainments
for each fuzzy goal is indicated by its height in z-axis. For
each via-point candidate, predicted range data, as shown in
Fig. 6, is used in calculating U;};, and F, and the normal-
ized distance to the target point Dy, is calculated. Using
equation (5), goal attainment of a via-point candidate for
each fuzzy goal can be acquired. Fig. 7 shows resulting
goal attainments for three different navigation goals and
that of the fuzzy decision set. It can be interpreted that (+)
heading angle and high speed are preferred for both of the
navigation goals G| and G,, whereas (—) heading angle and
high speed are preferred for G;. Attainments for decision
set are constituted by taking the minimum of attainments of
three fuzzy goals per each via-point (equivalent to decision
alternative). Finally, the highest attainment point in w(D)
graph, which corresponds to a via-point with mid (+) heading
angle and high speed, becomes the best via-point at the given
instance of navigation.

I11.5. Local minimum recovery

Like other local path planning approaches, the proposed
navigation algorithm has a local minimum problem. To detect
the outbreak of local minimum, we adopted the method of
Borenstein,” which compares the robot-to-target direction,
0., with the actual instantaneous direction of travel, 6. If the
robot’s direction of travel is more than a certain angle (90°

virtual

obstacle

real target

U, . direction

min

Fig. 8. Incorporating a virtual target on local-minimum alert: when
|6, — 6p] > 90° and Byt represents virtual target angle (or lure
angle).

in most cases) off the target point, that is, if

|6; — 6y| > (trap warning angle, typically 90°)  (7)
we regard it is very likely about to get trapped.

As a very simple and efficient way for recovery from a
local minimum, a wall following by introducing a virtual
target has been devised. As in Fig. 8, when the trap state
is detected, the original target point is replaced with the
virtual target point. The virtual target point is placed at a
constant distance from the robot, at a certain angle (typically
45°) from Uy, direction. Because Upy, direction represents
the nearest obstacle surface, placing a virtual target in that
direction guides the robot to follow the surface. When the
robot escapes from the condition above or when no obstacle
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Fig. 9. Change in shape of exponential sigmoid function according
to slope and center value.

is detected, the original target point is restored, and the robot
continues to proceed to the target point.

IV. SIMULATIONS

IV.1. Effects of fuzzy parameters

To demonstrate and verify the effectiveness of the proposed
method, we have performed a series of simulations over
various kinds of environments. The robot model parameters
used in the simulations were acquired from the actual mobile
robot, LCAR. A total of 15 curvature candidates, considering
the maximum turning radius, and 2 velocity candidates
(0.2m/s and 0.1 m/s) created 30 via-point candidates. The
decision-making cycle time is set to be 0.3s and the
maximum sonar range is set to 3.0 m.

A square room with a rectangular obstacle at the center is
chosen to be a test environment for a parameter sensitivity
study. As shown in Fig. 9, a change in the slope s and the
center value C causes a difference in its shape. As the slope
of membership function of a fuzzy goal becomes steeper,
the difference between decision alternatives becomes more
distinct. In the meantime, a higher center value represents
expectation of the higher goal attainment, and a lower center
value the lower attainment.

The effect of change of slope (s1, s, and s3) for navigation
behavior is shown in Fig. 10. The reference example has
neutral parameters, which has all the slope values at 1 and
center values at 0.5. Fig. 10(a) shows that the robot heads
to the right side to get closer to the target immediately after
start, but soon heads back to the left side to avoid collision
with the wall in the right. The robot moves along the short
corridor between the room wall and obstacle wall. The robot
successfully turns to the right side, approaches and reaches
the target position. In Fig. 10(b) with a larger value of sy,
we cannot see the initial right side approach as in (a). This
can be interpreted that as the slope of obstacle avoidance
goal increases, the difference in the attainment of the goal
becomes larger, which makes the goal more stressed than
others. However, a similar increase in slope for G, did not

Mobile robots
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Fig. 10. Effect of change in the slope of fuzzy MF on navigation
behavior.

show any difference, as can be seen in Fig. 10(c), because
its level of goal attainment is high for all the via-point
candidates. Fig. 10(d) shows that the slope for G3 is very
sensitive to its behavior in target point approaching. With
a small increase of 25% from the original value, the goal
of target point approach is highly stressed so that the robot
approaches quite closer to the wall at the beginning.

Change in the center value (Cy, C; and C3) of the fuzzy
membership function showed a much larger scale of change
in navigation behavior. As shown in Fig. 11, a change of
center value for G; alone can make the robot’s behavior
change a lot. When C is high, the robot tries to maintain a
longer distance from the wall of the room as well as from the
rectangular obstacle. As C; becomes smaller, the distance the
robot stays away from the wall becomes shorter. As can be
seen in Fig. 11(f), as C; becomes 0.1, which can be translated
to the expected obstacle clearance of 30 cm (the sonar’s range
limit is 3 m), the robot can pass through 1 m gap at the bottom
side of the environment. This shows that by controlling the
parameter C; we can control the robot to enter a narrow
passage or not. Passing through a narrow passage will be
mostly preferable as long as the robot does not collide there.
However, the change in the center value for G, does not
show any difference of behavior in the selected example, as
can be seen in Fig. 12. This can be interpreted that the goal
G, is not effective in this example. This does not mean that
the goal is not required, because G, becomes effective when
robot is surrounded by many obstacles. As it is shown in
Fig. 13(a)—(c), the value of C, can affect the navigation per-
formance drastically. When C, equals to 0.4 as in Fig. 13(a),
the robot headed into sharp corner where there is not enough
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space to turn back towards the target point. However, as C,
is lowered to 0.3 or to 0.22 as in Fig. 13(b) and (c), the robot
steers itself out of the corner point. A smaller C, represents
a lower level of expectation in repulsive potential, which
enables the selection of via-points that guide robot out of the
right angle corner.

Change in the center value for Gj affects navigation
behavior a lot, as it is shown in Fig. 14. Unlike G, G3
has a reverse shape of sigmoid function, which means the
smaller the better. When Cj is high like 0.8 in Fig. 14(a), the
expectation of goal reaching is not so important compared
to other goals. Thus, the behavior is very similar to that of
high value of C;. As C3 becomes smaller, the robot tends
to approach the target as quickly as possible, similar to
the behavior when the slope of G5 is high. However, from
Fig. 14(d) and (f), the value must be carefully selected so as
not to damage the goal of obstacle avoidance, which causes
a collision at last. From these results, we can see that the
balance of goals of obstacle avoidance and target reaching is
very important to the successful navigation of mobile robots.

IV.2. Escaping local minimum

We have tested our scheme of a virtual target for a local
minimum escape also. As it is shown in Fig. 15, initially
without the virtual targeting, the robot has been confined to a
concave obstacle and fell into a deadlock situation. However,
when the virtual targeting is activated as in Fig. 15(b), (c)
and (d), the robot starts following the wall as soon as the
trap warning condition of more than a 90 degree heading
angle offset is met, and then the robot could successfully
escape from the local minimum situation. This behavior is

also affected by the fuzzy membership function parameters.
Similar to results in Fig. 11, alarger C; makes robot approach
closer to the obstacle and vice versa for smaller C;. We could
see that the wall following behavior could be achieved over
a certain range of parameter values. However, because of
its nature that relies on the balance of two opposite goals
(obstacle avoidance and target reaching), as it is shown in
Fig. 15(e) and (f), the robot fails to navigate effectively if
this balance is not achieved.

V. NAVIGATION EXPERIMENT

Based on the successful navigation simulation results, we
have implemented the navigation algorithm in the actual
robot. Whereas, in the simulation, it is simply assumed that
the robot successfully reaches its via-point at every control
step, navigation in the real world involves uncertainties and
ambiguities, such as sensor noises, motion control errors and
wheel slips, which must be overcome to prove an approach
as a working methodology.

Navigation has been performed in a small hall at the
authors’ laboratory building. And, a set of parameter values
found from navigation simulations has been fed into the
actual robot, LCAR. As it is shown in Fig. 16, the robot
has successfully avoided surrounding obstacles and reached
its navigation target position. The robot turned to left at the
beginning of navigation, because goal of target reaching
was more highly evaluated than the goals of obstacle
avoidance. As it approaches to the fence at the left side, the
motion of obstacle avoidance is observed, because goals of
obstacle avoidance are more highly evaluated than before.
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Fig. 16. Experimental result of navigation in a hall. Positions and heading angle from dead reckoning are redrawn on computer screen
overlapped with a hand measured map. (Environment size = 10mx7.5m; Final dead reckoning error: (AX, AY, Af) = (—11.2cm,

42.0 cm, —7.0 deg); Total time of travel = 180s with 0.2 m/s max speed and 0.4 m/s> acceleration). Small rectangles in the lower right are
office furniture. (Fuzzy Parameters: s; = 4, C; = 0.35,5, =4, C, = 0.6, 53 = 1.2, C3 = 0.5).
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(a) Right after start

Mobile robots

(c) Just before the left turn

(d) Turning left

(e) Approaching the target

Fig. 17. Pictures of the navigation experiment of Fig. 16.

Fig. 17 shows snap shots of pictures taken during the
navigation presented in Fig. 16.

The robot’s navigation path in Fig. 16 is acquired purely
from dead-reckoning. Due to our localization scheme that
completely relies on the dead reckoning, the final position
of the robot was deviated from the actual target position.
The robot’s dead-reckoning is based on the encoder installed
on each of its two driving wheels placed 55 cm apart. Wheel
width is 3 cm and the diameter is 20 cm. A finite wheel width,
uneven weight distribution between two wheels and slip at
the contact point are the commonly known major causes of
the positional error in dead-reckoning. The positional error
is incremented as the robot moves a longer distance. After
a 7.74m long travel, the positional error was measured to

(f) Arrival at the target

be (AX =—11.2cm, AY = 42.0cm) and the heading angle
error was —7.0°. A relatively large error in the Y-coordinate
is considered to be mainly caused by an accumulated error
in the dead reckoning. However, the experimental result was
enough to show the validity and efficiency of the proposed
navigation method.

Local minimum escape strategy using a virtual target is
also experimented in a real situation. As it is shown in
Fig. 18(a), the robot is surrounded by a ‘U’-shaped office
partition, and its target position lies over the partition.
Without virtual targeting, the robot’s motion is confined
within the area surrounded by the partition and the robot
fails to escape from this local minimum, which is an inherent
shortcoming in sensor-based reactive navigation. However,
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(b) Escaping the local minimum with virtual targetting

Fig. 18. Navigation experiment result redrawn on a computer
screen: Local minimum without virtual targeting in front of a fence
45 via-point candidates (out of 15 heading angles with 2 velocities);
51=2,5%=2,53=12,C; =0.25,C, =0.6,C3 = 0.5).

by introducing the virtual target as in Fig. 18(b), the robot
could escape from being trapped inside the local minimum.
Typical parameter values are used: 90 degree for trap warning
angle and 45 degree for lure angle. The robot proceeds
to the target position at the beginning and soon swerves
into the right side to avoid hitting the wall ahead. As
it approaches the wall closer, its radius of curvature for
swerving becomes more rapid. Once the robot is in trap
warning condition, the robot’s target position is switched
into the virtual target, which is 45 degree offset from the
closest range sensor direction. Once the virtual target is
locked, the virtual target moves along with the robot until
the trap warning is turned off. This makes the robot to follow
the nearby obstacle surface until it heads back to original
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target direction. The motion of turning back to its original
target was a continuation of the sharp left turn. After turning
back, there is another jerk to the right side that caused another
trap warning. This happens because the robot finds that the
obstacle at the left side became observable suddenly only
when it approached very near. Due to the obstacle avoidance
goal, the robot turns rapidly to the right side, which invokes a
large overshoot motion. And then, the robot tends to move to
the right side more than it seems to be necessary and swerves
back to the left side. This is because obstacles at the right side
affect fuzzy decision-making only after the robot approaches
to them close enough. Nevertheless, the robot succeeds in
reaching the target position.

VI. CONCLUSIONS

In this paper, a sensor based reactive navigation algorithm
for wheeled mobile robots using fuzzy decision-making
has been proposed and implemented. This method models
a navigation problem as a decision-making problem in
determining the robot’s next via-point. It requires only three
fuzzy goals for successful navigation, which is compared to
a bunch of linguistic rules in conventional fuzzy rule based
navigation algorithms. The major advantage of this method
over other sensor-based reactive navigation approaches can
be its inherent nature of considering smooth paths of a robot,
since most of non-omni-directional mobile robots, which
have non-holonomic constraints, cannot steer directly by the
navigation controller’s output. A local minimum recovery
scheme by a wall following has also been developed by
introducing a virtual target. The validity and effectiveness
of the proposed method were verified through simulations
and experiments in real environments.
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