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Abstract: We demonstrate ultra-low timing jitter optical pulse trains from 
free-running, 80 MHz repetition rate, mode-locked Yb-fiber lasers. Timing 
jitter of various mode-locking conditions at close-to-zero intracavity 
dispersion (–0.004 to +0.002 ps

2
 range at 1040 nm center wavelength) is 

characterized using a sub-20-attosecond-resolution balanced optical cross-
correlation method. The measured lowest rms timing jitter is 175 
attoseconds when integrated from 10 kHz to 40 MHz (Nyquist frequency) 
offset frequency range, which corresponds to the record-low timing jitter 
from free-running mode-locked fiber lasers so far. We also experimentally 
found the mode-locking conditions of fiber lasers where both ultra-low 
timing jitter and relative intensity noise can be achieved. 
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1. Introduction 

Ultra-low timing jitter optical pulse trains from femtosecond mode-locked lasers enable 
extremely high timing-precision scientific and industrial applications such as long-range 
synchronization of accelerators, free-electron lasers (FELs) [1] and phased-array antennas [2], 
precise frequency comb generation [3], high-resolution optical sampling and analog-to-digital 
converters (ADC) [4], low-phase-noise microwave/RF signal generation [5–7], and coherent 
synthesis of optical pulses from multiple lasers [8,9]. Highly concentrated photon numbers in 
an ultrashort (e.g., <100 fs) laser pulse make the pulse temporal position robust against 
perturbations by photon noise, and it has been theoretically predicted that mode-locked lasers 
can achieve timing jitter well below a femtosecond [10–12]. 

Finding proper mode-locked lasers and mode-locking conditions that achieve minimal 
timing jitter is important for further advances in these high-precision applications. In doing so, 
it first requires the accurate timing jitter characterization of mode-locked lasers. Common 
timing jitter measurement methods based on direct photodetection of the pulse train and phase 
noise measurement of a selected RF harmonic [13] have limited dynamic range, which results 
in ~10 fs measurement resolution. To overcome this resolution limitation, a recently 
demonstrated balanced optical cross-correlation (BOC) method [14] can be used. The BOC 
method is an all-optical timing jitter characterization method that enables extremely high 
timing resolution (e.g., sub-20 as over the Nyquist frequency in this work) with minimal 
influence of intensity noise. The BOC method has recently been employed for timing jitter 
measurement of mode-locked solid-state and fiber lasers. Recent timing jitter measurements 
of solid-state Cr:LiSAF and Ti:sapphire lasers have shown 156 as and 20 as rms timing jitter, 
respectively, when integrated from 10 kHz to 10 MHz offset frequency range [15,16]. 

Femtosecond mode-locked fiber lasers [17] are attractive as ultralow-jitter signal sources 
because they are more compact, more robust, easier to build and operate, and lower-cost laser 
systems compared to solid-state crystal lasers. However, the fiber lasers are more challenging 
to optimize the noise performance than the solid-state lasers due to larger amplified 
spontaneous emission (ASE) noise, complicated pulse evolution dynamics in long fiber, 
limited pulse energy due to nonlinearities in fiber, and relatively lower cavity Q-factor. As a 
result, the best timing jitter performance demonstrated from free-running, passively mode-
locked Er and Yb fiber lasers has been limited to the order of ~1 fs level so far [18–20]. 

Both the analytical theory [10,21] and numerical simulation [22] on the noise of mode-
locked fiber lasers suggest that short pulsewidth and close-to-zero intracavity dispersion can 
reduce the timing jitter. The shorter pulsewidth can reduce the timing jitter that is directly 
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induced by the ASE noise; the smaller intracavity dispersion can further reduce the timing 
jitter that is indirectly coupled by the center frequency fluctuations. In a recent study of mode-
locked-regime-related timing jitter in Yb-fiber lasers, stretched-pulse regime indeed showed 
lower timing jitter than other mode-locked regimes such as soliton and self-similar owing to 
shorter pulsewidth and smaller intracavity dispersion magnitude [20]. However, due to 
relatively large chirp parameter at slightly positive net cavity dispersion condition (+0.003 ps

2
 

in [20]) typically used in stretched-pulse lasers, the measured rms timing jitter was limited to 
~1 fs level when integrated from 10 kHz to 40 MHz (Nyquist frequency) offset frequency. 

In this paper, we concentrate on the close-to-zero intracavity dispersion of free-running, 
passively mode-locked fiber lasers to search for the optimal timing jitter performance in fiber 
lasers. The experiments are based on stretched-pulse Yb-fiber lasers with grating pairs for 
intracavity dispersion compensation. The timing jitter of various mode-locking conditions at 

close-to-zero cavity dispersion (0.004 to +0.002 ps
2
 range at 1040 nm center wavelength in 

this work) is characterized using a sub-20-as resolution BOC method. The measured 
minimum rms timing jitter is 175 as when integrated from 10 kHz to 40 MHz (Nyquist 
frequency) offset frequency range. To our knowledge, this result corresponds to the lowest 
high-frequency timing jitter from mode-locked fiber lasers so far. In addition, the relative 
intensity noise (RIN) of different mode-locking conditions is characterized. We 
experimentally found the mode-locking conditions of fiber lasers where both ultra-low timing 

jitter (~200 as) and RIN (<10
14

 Hz
1

 at 10 kHz offset frequency) can be achieved. 

2. Experimental setup 

Two home-built, free-running, 80-MHz repetition-rate Yb-fiber lasers at 1040 nm center 
wavelength are used for the timing jitter characterization. The laser and experimental setup 
configuration is shown in Fig. 1. One laser is a unidirectional ring cavity, and the other laser is 
based on a σ-cavity design with a cavity mirror mounted on a piezoelectric transducer (PZT) 
for low-bandwidth repetition-rate locking with the other laser. The mode-locking operation in 
both lasers is achieved by nonlinear polarization evolution (NPE) in a stretched-pulse regime. 
A 600 line/mm grating pair is used in each laser for intracavity dispersion compensation. By 
tuning the separation of grating pairs, we can finely adjust the intracavity dispersion to search 
for the mode-locking condition that supports the lowest timing jitter. The total cavity normal 
dispersion is composed of single-mode-fiber, Yb-doped gain fiber and free-space bulk optics. 
The estimated cavity normal dispersion is +0.048 ps

2
 at 1040 nm, which can be compensated 

by ~33 mm separation of the intracavity grating pair at 30-degree incident angle. The grating 
pair separation is tuned from 32 mm to 36 mm, where 1 mm grating pair separation change  
 

 

Fig. 1. Experimental setup of the BOC-based timing jitter characterization of Yb-fiber lasers. 
DM: dichroic mirror; LD: 976nm laser diode; PZT: piezoelectric transducer. 

#148661 - $15.00 USD Received 2 Jun 2011; revised 7 Jul 2011; accepted 7 Jul 2011; published 13 Jul 2011
(C) 2011 OSA 18 July 2011 / Vol. 19,  No. 15 / OPTICS EXPRESS  14520



corresponds to a 2nd-order dispersion change of ~0.0015 ps
2
 at 1040 nm. The intracavity net 

dispersion was measured using an in situ dispersion measurement method [23,24], and the 

dispersion range is from +0.002(±0.001) ps
2
 to 0.004(±0.001) ps

2
 when the grating pair 

separation is tuned from 32 mm to 36 mm. Note that the cavity 2nd-order dispersion value 
changes significantly over the broad optical spectrum (>50 nm FWHM), which is mainly due 
to the high 3rd-order dispersion introduced by the grating pair. In this paper, the quoted 
intracavity dispersion is the 2nd-order dispersion value at a nominal center wavelength of 
1040 nm for all the measurements. 

The timing jitter of Yb-fiber lasers is measured by the BOC method. A SF11 prism pair is 
used for extra-cavity dispersion compensation of each laser before the cross-correlation in 
order to enhance the resolution for the BOC-based timing jitter characterization. The BOC 
method measures the changes in temporal overlap between two optical pulses with minimal 
influences of intensity noise, which enables sub-20-attosecond-resolution detection of timing 
jitter between optical pulse trains. More detailed information on the BOC measurement 
technique can be found in [14] and [20]. By monitoring the jitter spectral density from the 
BOC using RF analyzer and FFT analyzer, we search for the optimal dispersion and mode-
locking conditions that achieve the lowest timing jitter. 

3. Timing jitter characterization at close-to-zero intracavity dispersion 

The timing jitter spectra at various mode-locking conditions in the stretched-pulse regime are 
characterized using the BOC method. The typical timing jitter spectra and optical spectra from 

0.004 ps
2
 to +0.001 ps

2
 range are plotted in Fig. 2. For comparison, the jitter and optical 

spectrum at +0.003 ps
2
 measured in [20] is also shown. The timing jitter spectra follow 1/f

2
 

slope from 10 kHz to 1 MHz offset frequency, which indicates the random walk nature 
directly originated from the ASE noise-induced timing jitter. Interestingly, when the 
intracavity dispersion approaches zero, the jitter spectral density can be 18 dB lower than the 
same stretched-pulse laser working at +0.003 ps

2
 intracavity dispersion. 

 

Fig. 2. (a) Typical timing jitter spectra and (b) the corresponding optical spectra measured at 
different mode-locking conditions from a stretched-pulse Yb-fiber laser. 

The integrated timing jitter from 10 kHz to 10 MHz versus intracavity dispersion for 
different laser mode-locking conditions is plotted in Fig. 3. The lowest integrated timing jitter 
can be achieved at zero intracavity dispersion. There is asymmetric increase of integrated 
timing jitter versus intracavity dispersion, which is due to different chirp parameter for 
positive and negative dispersion. In stretched-pulse fiber lasers, the Kerr effect and dispersion 
imbalance results in intracavity pulse chirping. The chirp parameter satisfies the following 
equation according to S. Namiki and H. A. Haus’s analytical theory [21]: 

  
2

1
tan arg arg

2 g

g
j jD 

    
            

  (1) 

#148661 - $15.00 USD Received 2 Jun 2011; revised 7 Jul 2011; accepted 7 Jul 2011; published 13 Jul 2011
(C) 2011 OSA 18 July 2011 / Vol. 19,  No. 15 / OPTICS EXPRESS  14521



where g is laser amplitude gain, Ωg is HWHM of gain bandwidth of laser medium, D is 
intracavity dispersion, and α is proportionality factor that depends on the orientation of wave 
plates and polarizers. For our Yb-fiber lasers, Ωg is 3.9 × 10

13
 rad/s; g is determined by 

compensating the cavity loss, which is calculated as ~1; α is between 0.1 and 0.3 for typical 
NPE mode-locking fiber lasers [21] and is set to 0.2 in this paper. The calculated chirp 
parameter versus cavity dispersion is also plotted in Fig. 3. The chirp parameter is nearly zero 
for negative dispersion, and dramatically increases in magnitude at positive dispersion as 
shown in Fig. 3. The larger absolute value of chirp parameter results in a longer average 
intracavity pulse duration, which leads to larger timing jitter. This explains the rapid increase 
of timing jitter at positive intracavity dispersion. Note that the chirp parameter is non-zero at 
zero intracavity dispersion. This explains the reason why the integrated timing jitter at zero 
dispersion is not much reduced compared to the jitter at the slightly negative dispersion (e.g., 

at 0.004 ps
2
 in Fig. 3) even though the indirectly-coupled timing jitter is minimized at zero 

cavity dispersion. 
The timing jitter spectral density and the equivalent single-sideband (SSB) phase noise at 

10-GHz carrier frequency of the lowest integrated timing jitter condition is shown in Fig. 4.  
 

 

Fig. 3. The rms timing jitter (integrated from 10 kHz to 10 MHz offset frequency) versus 
intracavity dispersion of different mode-locking conditions. Bottom is the calculated chirp 
parameter versus intracavity dispersion. 

 

Fig. 4. Top: The best timing jitter spectral density measurement result and the equivalent 
single-sideband (SSB) phase noise at 10-GHz carrier frequency of the Yb-fiber laser operating 
at zero intracavity dispersion. The RIN-induced timing jitter projected from the measured RIN 
is also plotted. Bottom: The integrated timing jitter is 175 as [10 kHz – 40 MHz]. Inset: optical 
spectra of the two Yb-fiber lasers used. 
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The net cavity dispersion is 0.000(±0.001) ps
2
. The inset shows the optical spectra of two 

lasers with FWHM of ~55 nm. The shot noise level (~10
12

 fs
2
/Hz) is lower than the measured 

results over the entire Nyquist frequency, which indicates that the measurement is not limited 
by the BOC resolution. The rms timing jitter integrated from 10 kHz to 40 MHz (Nyquist 
frequency) offset frequency is 175 as (shown in the bottom of Fig. 4). To our knowledge, this 
is the lowest high-frequency timing jitter performance measured from mode-locked fiber 
lasers. The flat jitter spectrum above 7 MHz offset frequency can be explained by the RIN-
coupled timing jitter originated from the Kramers-Krönig relation [11]: the resulting timing 
jitter spectral density can be expressed by SΔt

2
 (f) = RIN(f)/(2πΔfg)

2
, where Δfg is the gain 

bandwidth. By using the measured laser RIN of ~10
14

/Hz and the gain bandwidth of 45 nm, 

we can predict the RIN-induced timing jitter spectral density to be ~2 × 10
12

 fs
2
/Hz level, 

which agrees fairly well with the measured result. For comparison, the RIN-induced timing 
jitter projected from the measured RIN is also plotted in Fig. 4. 

4. Comparison of timing jitter and RIN performances at close-to-zero cavity dispersion 

As shown in Fig. 3, mode-locking conditions at the negative dispersion side of the close-to-
zero cavity dispersion can support sub-500 as timing jitter. Several mode-locking conditions 
can achieve ~200 as timing jitter performance besides the 175 as integrated timing jitter at the 
zero cavity dispersion. At a fixed cavity dispersion, different mode-locking conditions can 
have more than twice difference in the integrated timing jitter value. In this section, we 
compare two interesting cases for mode-locking condition dependent timing jitter. 

The timing jitter spectra measured at 0.004 ps
2
 and 0.000 ps

2
 cavity dispersion conditions 

are plotted in Fig. 5. The corresponding integrated timing jitter is marked as red up-triangle (at 

0.004 ps
2
) and blue down-triangle (at 0.000 ps

2
) in the upper inset of Fig. 5. The FWHM of 

the output optical spectrum at the zero cavity dispersion is more than twice wider than that of 
the negative cavity dispersion condition, as shown in the lower inset of Fig. 5. However, the 
BOC measurement shows that the timing jitter spectra and the resulting integrated jitter (175 

as for 0.000 ps
2
 and 210 as for 0.004 ps

2
) are very similar even though the dispersion 

condition and output optical spectra are quite different. This result shows that it is not a 
necessary condition to operate the fiber laser at the exact zero dispersion in order to achieve 
~200 as timing jitter. In the negative cavity dispersion, the reduced chirp parameter enables a 
low timing jitter performance, even though its indirectly-coupled timing jitter is larger than 
that of the zero cavity dispersion condition. When we increase the grating pair separation 
further to get a larger negative cavity dispersion (<-0.004 ps

2
), the timing jitter increases again 

because the average pulse duration now becomes significantly longer. 
When the cavity dispersion of mode-locked fiber lasers approaches zero, the mode-locking 

condition can be quite different by changing the NPE strength and finely tuning the grating 
pair separation. As a result, not all the mode-locking conditions guarantee a sub-200 as timing 
jitter. For some mode-locking conditions, even when the RF spectrum, optical spectrum, and 
extra-cavity dechirped pulsewidth are similar, the jitter spectrum can differ much. This is the 

case as shown by the green up-triangle (at 0.001 ps
2
) and the blue down-triangle (at 0.000 

ps
2
) of the upper inset in Fig. 6. The jitter spectra and optical spectra of these two mode-

locking conditions are shown in main part and the lower inset of Fig. 6, respectively. Even the 
optical spectra look very similar with almost identical dispersion conditions, the integrated 

timing jitter at 0.001 ps
2
 in a non-optimal laser condition (390 as) is more than twice larger 

than that of the best timing jitter at 0.000 ps
2
 (175 as). This also shows the usefulness of the 

BOC method that it can serve as an ultra-sensitive timing jitter status monitor, which is 
necessary for maintaining the fiber lasers in the minimum jitter condition for noise-sensitive 
applications. 

Recently, the RIN of mode-locked fiber lasers has been discussed intensively [24–27]. In 
this work, in addition to the timing jitter characterization, we also measured the RIN of the 
above-mentioned mode-locking conditions. Figure 7 shows the measured RIN spectra of  
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Fig. 5. The comparison of best achievable timing jitter at 0 ps2 (blue down-triangle and blue 

curves) and 0.004 ps2 (red up-triangle and red curves) intracavity dispersion. Even the 
dispersion and optical spectra are different, the jitter spectra and integrated jitter are similar. 

 

Fig. 6. The comparison of timing jitter with different mode-locking conditions. Even the 
dispersion and optical spectra are similar, the jitter spectra and integrated jitter can be 
significantly different. 

 

Fig. 7. RIN of the mode-locked Yb-fiber laser with different intracavity dispersion. 

various mode-locking conditions of the Yb-fiber laser. The RIN data measured at 0.021 ps
2
 

cavity dispersion corresponds to the soliton regime. The other data are measured in the 
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stretched-pulse regime. The RIN of mode-locked fiber lasers obtained at zero cavity 
dispersion and negative cavity dispersion is lower than that of positive cavity dispersion in the 
high offset frequency (>30 kHz), which is similar to the timing jitter measurement results 
shown in Fig. 3. The lowest RIN can be obtained at close-to-zero intracavity dispersion 

conditions (0.004 ps
2
 to 0 ps

2
 range), which is consistent with the recent study in [24]. The 

lower RIN at slightly negative dispersion might be due to the soliton-like pulse formation 
effect in negative dispersion as explained in [28]. 

5. Conclusion and discussion 

In this paper, we characterized the high-frequency timing jitter and RIN of free-running, 
stretched-pulse Yb-fiber lasers operating at close-to-zero intracavity dispersion. The measured 
lowest rms timing jitter is 175 as when integrated from 10 kHz to 40 MHz offset frequency. 
To our knowledge, this result corresponds to the lowest high-frequency timing jitter from 
mode-locked fiber lasers so far. This result demonstrates that standard free-running, NPE-
based fiber lasers can achieve timing jitter (and equivalent phase noise) performance 
comparable to solid-state crystal lasers [15,16] and the best commercial microwave sources 
(such as sapphire-loaded cavity oscillators) with much reduced cost and engineering 
complexity. Another interesting finding is that both the lowest timing jitter and RIN can be 

obtained in a narrow range of close-to-zero dispersion (in this work, from 0.004 ps
2
 to 0 ps

2
), 

which is fairly consistent with the recent study on the optimization of fceo noise at zero 
dispersion [24]. Since choosing the right mode-locking condition at a given intracavity 
dispersion is also important for the optimization of timing jitter, the BOC method can be used 
as an ultra-sensitive, real-time jitter monitor to find and maintain the best performance. Note 
that the Yb-fiber laser used in this work is not fully optimized for the lowest possible timing 
jitter operation because of the low cavity Q (four bounces on grating pair in one round-trip 
contribute 85% power loss). Higher Q fiber lasers (e.g., all-fiber implementation) operating at 
close-to-zero cavity dispersion are expected to have timing jitter well below 100 as in the near 
future. 
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