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Abstract: The discrete layer-peeling algorithm (DLPA) requires to
discretize the continuous medium into discrete reflectors to synthesize
nonuniform fiber Bragg gratings (FBG), and the discretization step of this
discrete model should be sufficiently small for synthesis with high accuracy.
However, the discretization step cannot be made arbitrarily small to decrease
the discretization error, because the number of multiplications needed with
the DLPA is proportional to the inverse square of the layer thickness.
We propose a numerically extrapolated time domain DLPA (ETDLPA) to
resolve this tradeoff between the numerical accuracy and the computational
complexity. The accuracy of the proposed ETDLPA is higher than the
conventional time domain DLPA (TDLPA) by an order of magnitude or
more, with little computational overhead. To be specific, the computational
efficiency of the ETDLPA is achieved through numerical extrapolation, and
each addition of the extrapolation depth improves the order of accuracy
by one. Therefore, the ETDLPA provides us with computationally more
efficient and accurate methodology for the nonuniform FBG synthesis than
the TDLPA.
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1. Introduction

For certain applications of fiber Bragg gratings (FBG), it is important to design the grating
profile that produces the desired spectrum. This fiber Bragg grating (FBG) synthesis problem
can be solved by one of the inverse scattering techniques, for example, the Gel’fand-Levitan-
Marchenko (GLM) method [1] or the layer peeling approaches [2–4]. The GLM method can
synthesize the FBG having a rational spectrum, but cannot guarantee the accuracy of the result
for a general spectrum shape, while the approaches based on numerical optimization schemes
require intensive computational resources [5–7].

On the other hand, the layer peeling method identifies the medium layer-by-layer using
the causality condition of the counter-propagating waves. Since the pioneering works of [2]
and [3], the discrete layer-peeling algorithm (DLPA) has been regarded as one of the most ef-
ficient methods for the synthesis of nonuniform FBG [8–15]. In the usual FBG synthesis prob-
lem, the time domain DLPA (TDLPA) has better accuracy than the frequency domain DLPA
(FDLPA) [3], although the TDLPA shows degraded performance for a strong uniform grat-
ing [9] because the TDLPA is sensitive to the roundoff errors and the error accumulation of the
TDLPA is maximized when the sign of the coupling profile is not changed [16]. The disadvan-
tage of the TDLPA for a strong uniform grating can be resolved using the integral layer-peeling
method [8, 9]. The accuracy of the FDLPA can be made comparable to the TDLPA by increas-
ing the spectral resolution [3], which increases the computational complexity of the FDLPA.
Furthermore, the TDLPA not only has lower computational complexity than the FDLPA, but
are appropriate for the parallel implementation because the inner product is not involved in the
TDLPA [17–19].

The DLPA computes the coupling coefficient using the equispaced discrete model approxi-
mation of the piecewise uniform model for synthesis of nonuniform FBG [2, 3], and the accu-
racy and the efficiency of the piecewise uniform model for FBG is verified both experimentally
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and numerically [20]. Similarly to the usual numerical methods, the numerical discretization
error of the DLPA is inevitable and the discretization step, i.e., the layer thickness of the DLPA,
should be sufficiently small to get high accuracy. However, if the layer thickness of the DLPA is
decreased to improve the accuracy, the total number of layers of the DLPA becomes larger. The
computational complexity of the DLPA increases proportionally to the inverse square of the
layer thickness because the involved multiplication count of the DLPA increases proportionally
to the square of the total number of layers. Therefore, the accuracy of the previously known
DLPA can be improved only with the greatly increased computational cost.

To overcome this tradeoff between the accuracy and the computational complexity of the
DLPA for synthesis of nonuniform FBG, we propose a numerically extrapolated TDLPA (ET-
DLPA). The proposed ETDLPA employs a numerical extrapolation scheme [21] to improve the
accuracy of the conventional TDLPA without increasing the computational complexity signif-
icantly. Similarly to the conventional numerical extrapolation scheme, the ETDLPA combines
the results of the TDLPA hierarchically starting from the coarsest discretization, and the order
of accuracy of the TDLPA increases as much as that of the extrapolation depth.

However, the extrapolation procedure of the ETDLPA differs from the conventional numer-
ical extrapolation scheme in two ways. First, the extrapolation procedure of the ETDLPA is
applied to the vector quantity, unlike the conventional extrapolation method which operates on
the scalar quantity. The output of the ETDLPA is a set of reflection coefficients that is a vector
quantity. Second, the computation procedure of the ETDLPA is not memoryless because the
reflection coefficient at the current position is dependent on the previous reflection coefficients,
which is not the case with the conventional extrapolation scheme. In the ETDLPA, the extrap-
olated reflection coefficients for the whole grating positions cannot be obtained by a single
execution of the conventional extrapolation procedure because of these numerically distinctive
features of the ETDLPA. In this paper, the overall procedure of the ETDLPA is completed by
the repetition, with suitably shifted scattering data, of the basic extrapolation procedure as many
times as determined by the involved layer thickness values.

In spite of the increased accuracy order, the computational complexity of the ETDLPA, which
employs practically meaningful extrapolation depth, is usually less than three times of that of
the DLPA.

2. ETDLPA

The synthesis of nonuniform FBG is the one-dimensinoal inverse scattering problem repre-
sented by the coupled mode equations in the space-frequency domain [2]

∂
∂ z

[
U(z,δ )
V (z,δ )

]
=

[
iδ q∗(z)

q(z) −iδ

][
U(z,δ )
V (z,δ )

]
, (1)

where U(z,δ ) is the forward propagating wave, V (z,δ ) is the backward propagating wave, q(z)
is the coupling coefficient at the grating position z, and δ is the detuning factor. The goal of
the synthesis of nonuniform FBG is to find q(z) given the desired spectrum described by the
scattering data U(0,δ ) and V (0,δ ).

This synthesis problem can be solved by the TDLPA based on the discretization of Eq. (1) [3].
Assume that nonuniform FBG is discretized as discrete reflectors with layer thickness h. The
error formula of the TDLPA with the layer thickness h is given by the power series of h,

q̂(z,h) = q(z)+
∞

∑
l=1

alh
l , (2)

where q̂(z,h) is the coupling coefficient computed by the TDLPA with the layer thickness h and
al is independent with h. A detailed derivation of Eq. (2) is given in appendix A. It is clear from

#142735 - $15.00 USD Received 17 Feb 2011; revised 19 Mar 2011; accepted 26 Mar 2011; published 14 Apr 2011
(C) 2011 OSA 25 April 2011 / Vol. 19, No. 9 / OPTICS EXPRESS  8256



Eq. (2) that the accuracy of the TDLPA is O(h). The key feature of the ETDLPA is to eliminate
the remained error terms in Eq. (2) by combining the results of the TDLPA for various layer
thickness values through a numerical extrapolation procedure. For example, the result of the
TDLPA with the layer thickness 2h can be written from Eq. (2) as follows,

q̂(z,2h) = q(z)+
∞

∑
l=1

al2
lhl . (3)

Multiplying Eq. (2) by 2 and subtracting from Eq. (3), we get

2q̂(z,h)− q̂(z,2h) = q(z)−2a2h2 −6a3h3 + · · · . (4)

Equation (4) is only the first stage of the extrapolation procedure of the ETDLPA, in which the
first degree term a1h of Eq. (2) is removed in Eq. (4), and thus, the accuracy order is increased
from O(h) to O(h2). This observation shows that additional information for the coupling coef-
ficient computed by the TDLPA with under-sampled scattering data can improve the accuracy
of the TDLPA. Note that the scattering data with the layer thickness 2h is just two times under-
sampled data of the scattering data with the layer thickness h. In the TDLPA, the accuracy
O(h2) is obtained with the layer thickness of h2. If the number of layers with the layer thick-
ness h is N, the number of layers with the layer thickness h2 is N/h. It is easy to become aware
that the computational complexity of Eq. (4) can be remarkably lower than that of q̂(z,h2) to
achieve the accuracy O(h2) if h is sufficiently small. Note that the value of al does not need for
the extrapolation. The computational efficiency of the ETDLPA will be detailed at the end of
this section.

Now we generalize the concept of Eq. (4) to get higher accuracy. The P-stage extrapolation
procedure of the ETDLPA can be formulated using q̂(z,h), q̂(z,2h), · · · , q̂(z,(P+1)h) to obtain
the accuracy O(hP+1). From Eq. (2), the result of the TDLPA with the layer thickness mh can
be written by

q̂(z,mh) = q(z)+
∞

∑
l=1

alm
lhl , 1 ≤ m ≤ P+1. (5)

Because the aim of the P-stage extrapolation procedure is to eliminate a1h,a2h2, · · · ,aPhP terms
in Eq. (2) by combining q̂(z,h), q̂(z,2h), · · · , q̂(z,(P+1)h), we get

P+1

∑
m=1

ωmq̂(z,mh) = q(z)+
∞

∑
l=P+1

a′kh
k, (6)

where ωm is the weight to be determined and a′k is independent with h. Inserting Eq. (5) into
the left-hand side of Eq. (6), we get

P+1

∑
m=1

ωmq̂(z,mh) =
P+1

∑
m=1

ωm

(
q(z)+

∞

∑
l=1

alm
lhl

)

= q(z)
P+1

∑
m=1

ωm +
P

∑
l=1

hlal

P+1

∑
m=1

ωmml +
∞

∑
l=P+1

hlal

P+1

∑
m=1

ωmml . (7)

Comparing Eq. (6) and Eq. (7), ωm can be obtained by solving the following system of linear
equations,

APωωωP = e1, (8)
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where

AP =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 2 3 · · · (P+1)
1 22 32 · · · (P+1)2

...
...

...
...

...
1 2P 3P · · · (P+1)P

⎤
⎥⎥⎥⎥⎥⎦
, ωωωP =

⎡
⎢⎢⎢⎢⎢⎣

ω1

ω2

ω3
...

ωP+1

⎤
⎥⎥⎥⎥⎥⎦
, e1 =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦
. (9)

For the successful extrapolation process of the ETDLPA, the coupling coefficient should
be available for all layer thickness values involved during the extrapolation procedure. There-
fore, the grating position of the ETDLPA should be carefully treated because the TDLPA with
different layer thickness produces the coupling coefficient at different grating positions. We
introduce the notation q̂(z,mh,sh) to denote the coupling coefficient computed by the TDLPA
with the layer thickness mh and the starting position sh. The reconstructed grating positions
of q̂(z,mh,sh) are (s+ lm)h, l = 0,1, · · · . For convenience, we denote the P-stage ETDLPA
with the layer thickness h and the TDLPA with the layer thickness h by ETDLPA(P, h) and
TDLPA(h), respectively. As an example to explain the grating position problem, let us consider
ETDLPA(2, h). ETDLPA(2, h) combines TDLPA(h), TDLPA(2h) and TDLPA(3h) according
to Eq. (6). The solution of Eq. (8) for P = 2 is given by

ωωω T
2 =

[
ω1 ω2 ω3

]
=
[
3 −3 1

]
(10)

The reconstructed grating positions of q̂(z,h,0), q̂(z,2h,0), and q̂(z,3h,0) are given by

q̂(z,h,0) : 0,h,2h,3h,4h,5h,6h,7h,8h,9h,10h,11h,12h,13h, · · · (11)

q̂(z,2h,0) : 0,2h,4h,6h,8h,10h,12h,14h, · · · (12)

q̂(z,3h,0) : 0,3h,6h,9h,12h,15h, · · · . (13)

The functions q̂(z,2h,0) and q̂(z,3h,0) do not have values at the grating position of h and
we cannot get the extrapolated value at this grating position using q̂(z,h,0), q̂(z,2h,0), and
q̂(z,3h,0). For grating positions except for the multiples of 6h, we can not perform the extrap-
olation procedure because the coupling coefficient at these grating positions is not available
for at least one layer thickness. Therefore, we can perform the extrapolation process only at
the grating positions 6lh, l = 0,1, · · · , denoted by the the bold face in Eqs. (11)–(13), using
q̂(z,h,0), q̂(z,2h,0), and q̂(z,3h,0) as

q(z)|z=(6l)h =
3

∑
m=1

ωmq̂(z,mh,0)|z=(6l)h, l = 0,1, · · · . (14)

To get the extrapolated coupling coefficient at the grating positions (6l+1)h, l = 0,1,2, · · · ,
we need to move the starting position from 0 to h. Similarly to the previous discussion about
the starting position 0 to compute the extrapolated coupling coefficients at the grating posi-
tions 6lh, l = 0,1, · · · , we can get the extrapolated value at the grating positions (6l + 1)h, l =
0,1,2, · · · using q̂(z,h,h), q̂(z,2h,h), and q̂(z,3h,h) as

q(z)|z=(6l+1)h =
3

∑
m=1

ωmq̂(z,mh,h)|z=(6l+1)h, l = 0,1, · · · . (15)

Note that the reconstructed grating positions of q̂(z,h,h), q̂(z,2h,h), and q̂(z,3h,h) are given
by

q̂(z,h,h) : h,2h,3h,4h,5h,6h,7h,8h,8h,9h,10h,11h,12h,13h,14h, · · · (16)

q̂(z,2h,h) : h,3h,5h,7h,9h,11h,13h,15h, · · · (17)

q̂(z,3h,h) : h,4h,7h,10h,13h,16h, · · · (18)
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In general, the grating positions of q̂(z,h,sh), q̂(z,2h,sh), · · · , q̂(z,(P+ 1)h,sh) coincide only
at z = (s + lL)h, l = 0,1, · · · , where L is the least common multiple of 1,2, · · · ,P + 1, i.e.,
L = LCM(1,2, · · · ,P+ 1). Therefore, one execution of the extrapolation procedure in the ET-
DLPA can provide the coupling coefficient at equally Lh-spaced grating positions. For the re-
construction of the coupling coefficient at all grating positions, the extrapolation procedure of
the ETDLPA should be performed L-times, with the different starting positions spanning from
0 to (L−1)h. The P-stage extrapolation using q̂(z,mh,sh),m = 1,2, · · · ,P+1 is given by

q(z)|z=(Ll+s)h =
P+1

∑
m=1

ωmq̂(z,mh,sh)|z=(Ll+s)h, l = 0,1, · · · , (19)

with the accuracy O(hP+1). Now ETDLPA(P, h) can be summarized as follows.

Algorithm 1. ETDLPA(P, h)
Set P and h ;
Compute L = LCM(1,2, · · · ,P+1) ;
Construct Eq. (8) and compute ωωωN by solving Eq. (8);
For s = 0,1, · · · ,L−1

For m = 1,2, · · · ,P+1
Compute q̂(z,mh,sh);

End
Compute q(z)|z=(Ll+s)h, l = 0,1, · · · using Eq. (19)

End

The TDLPA with N-layers involves N2 +N multiplications. The P-stage ETDLPA with N-
layers involves

P+1

∑
m=1

m

(
N2

m2 +
N
m

)
+L(P+1)N = N2

P+1

∑
m=1

1
m
+(L+1)(P+1)N (20)

multiplications. In the left-hand side of Eq. (20), the first term and the second term are the
number of the multiplications to compute q̂(z,mh,sh) and Eq. (19), respectively. If we compare
the dominant N2-term of Eq. (20) with that of the TDLPA, the number of the involved multipli-
cations of the ETDLPA is increased by the factor of ∑P+1

m=1
1
m . This factor is very small for the

practical P. The increment of the computational cost of the ETDLPA compared to the TDLPA
is negligible because the involved layer thickness values during the extrapolation procedure are
larger than the given layer thickness h. For example to illustrate the computationally efficient
feature of the proposed ETDLPA, let us consider h = 10−3. The layer thickness of the TDLPA
should be h2 to achieve the accuracy O(h2), and then the number of layers of the TDLPA is
increased to 103N. Therefore, we need 106N2 + 103N multiplications to get accuracy O(h2)
using the TDLPA. However, the accuracy O(h2) can be obtained through ETDLPA(1, h), and
the involved multiplications of ETDLPA(1, h) are just 3

2N2+2N which is nearly same as that of
TDLPA(h). The larger extrapolation stage better reveals the excellence of the ETDLPA. The in-
volved multiplications of ETDLPA(2, h) are 11

6 N2+3N and the accuracy is improved to O(h3).
But TDLPA(h3) requires 1012N2 +106N multiplications to get the accuracy O(h3).

3. Numerical examples

To demonstrate the performance of the proposed ETDLPA, we compare the ETDLPA with
the TDLPA using two examples. First, for a flat-top bandpass filter, we compare the synthesis
results of the ETDLPA and TDLPA to verify the accuracy and the computational efficiency
of the proposed ETDLPA. Then, we detail an another example to show more concretely how
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Fig. 1. Comparison of the ETDLPA and TDLPA for synthesis of a flat-top bandpass filter:
(a) reflectivity, (b) enlarged plot of (a) marked by ellipsoid, (c) coupling coefficient, (d)
enlarged plot of (a) marked by ellipsoid.

the ETDLPA is able to improve the accuracy and the numerical aspects of the conventinoal
TDLPA.

3.1. Nonuniform FBG synthesis example: flat-top bandpass filter

For nonuniform FBG synthesis example, we consider a flat-top bandpass filter described by the
impulse response g(t) and the spectral response G(δ ),

g(t) =
√

A
sin(2πBt)

πt
, G(δ ) =

√
A rect

(
δ
B

)
(21)

with 0 < A ≤ 1, where

rect(x) =

{
1, for |x| ≤ 1
0, for |x|> 1

, (22)

B is the bandwidth. In this example, the grating length is 3.3 cm, A = 0.9, B = 1 nm, and
h = 0.005 cm. The impulse response was time-shifted and apodized by a Hann function as
done in [2, 3].

The synthesized coupling coefficient and the reflectivity are shown in Fig. 1. In this figure,
we compare ETDLPA(2, h) with TDLPA(h). The result of TDLPA(h/1000) is also plotted to
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show the enhanced accuracy of the ETDLPA in Fig. 1. For a fair comparison, the coupling
coefficient of TDLPA(h/1000) is under-sampled 1,000-times and the reflectivity is plotted by
using this under-sampled coupling coefficient. The part of Figs. 1(a) and 1(c) marked by ellip-
soid enlarged to demonstrate clearly the improved accuracy of the ETDLPA at Figs. 1(b) and
1(d), respectively. The target reflectivity shown in Figs. 1(a) and 1(b) is plotted from the time-
shifted and apodized impulse response. ETDLPA(2, h) shows more accurate synthesis result
than TDLPA(h) as seen from Fig. 1(b). Also, the reflectivity of ETDLPA(2, h) is even closer to
the target reflectivity than TDLPA(h/1000), but the involved multiplications of ETDLPA(2, h)
are only 2×10−6 of that of TDLPA(h/1000). Therefore, the ETDLPA can synthesize nonuni-
form FBG in a computationally efficient manner with high accuracy. Note that the computa-
tional complexity of ETDLPA(2, h) is just two times of that of TDLPA(h). In Figs. 1(c) and
1(d), we compare the accuracy of the synthesized coupling coefficient by using the result of the
TDLPA with smaller layer thickness, although we can not know the exact coupling coefficient
for the target reflectivity. It can be seen in Fig. 1(d) that the coupling coefficient reconstructed
by ETDLPA(2, h) is nearly same as that of TDLPA(h/1,000). But it shows a gap up to 0.2 in
the coupling coefficient between TDLPA(h/1,000) and TDLPA(h). The shape of the coupling
coefficient is similar to the impulse response as mentioned in [1].

Therefore, the proposed ETDLPA provides highly accurate synthesis results with dramati-
cally reduced computational cost.

3.2. Third order Butterworth filter

Table 1. Comparison of the ETDLPA and TDLPA for Synthesis of the Third Order Butter-
worth Filter: Normalized Error and Involved Multiplications, h=0.1

Synthesis Method Normalized Error Multiplications Accuracy

TDLPA(h) 7.1×10−2 3.6×103 O(h)
TDLPA(h2) 7.1×10−3 3.6×105

O(h2)
ETDLPA(1, h) 1.1×10−2 5.6×103

TDLPA(h3) 7.1×10−4 3.6×107
O(h3)

ETDLPA(2, h) 3.2×10−3 7.7×103

Table 2. Comparison of the ETDLPA and TDLPA for Synthesis of the Third Order Butter-
worth Filter: Normalized Error and Involved Multiplications, h=0.01

Synthesis Method Normalized Error Multiplications Accuracy

TDLPA(h) 7.1×10−3 3.6×105 O(h)
TDLPA(h2) 7.1×10−5 3.6×109

O(h2)
ETDLPA(1, h) 1.1×10−4 5.4×105

TDLPA(h3) 7.1×10−7 3.6×1013
O(h3)

ETDLPA(2, h) 4.1×10−6 6.7×105

We verify the accuracy and the computational efficiency of the ETDLPA more quantitatively
using the identification problem of the coupling coefficient. The coupling coefficient of the
Butterworth filter can be computed exactly by the Gelfand-Levitan-Marchenko method [1], and
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Fig. 2. Coupling coefficient computed by ETDLPA(2, h) and TDLPA(h) for the third order
Butterworth filter when the layer thickness h is 0.1.

therefore, the Butterworth filter is a good example to illustrate the accuracy of the ETDLPA.
The measure of the accuracy is the normalized error defined by

∑z |q(z)− q̂(z)|
∑z |q(z)|

, (23)

where q(z) is the exact coupling coefficient and q̂(z) is the coupling coefficient computed by
the TDLPA or the ETDLPA.

We consider the third order Butterworth filter with the transfer function,

G(s) =
r0

∏3
l=1 (s−αl)

, αl = exp

[
i
π
2

(
1+

2l−1
3

)]
. (24)

The impulse response g(t) can be computed by the inverse Laplace transform of G(s). The
length of the grating is 6 m and r0 =

√
0.3. We compare the normalized error and the involved

multiplications of the ETDLPA and the TDLPA for synthesis of the third order Butterworth
filter. The normalized error and the involved multiplications of the ETDLPA and TDLPA for
h = 0.1 are summarized in Table 1. TDLPA(h2) and ETDLPA(1, h) have the same accuracy
O(h2) and are grouped in Table 1. Similarly, TDLPA(h3) and ETDLPA(2, h) are grouped in
Table 1 because those have the same accuracy O(h3). The validity of Eq. (2) is verified indi-
rectly in this table by observing the trend of the normalized error of TDLPA(h), TDLPA(h2),
and TDLPA(h3). The normalized error of the TDLPA is reduced exactly by the decreasing fac-
tor of the layer thickness, which corresponds to Eq. (2). For example, the layer thickness and
the normalized error of TDLPA(h2) are 1/10 of those of TDLPA(h), respectively. Also, it is
observed in Table 1 that the accuracy order of the ETDLPA is properly increased according to
Eq. (6). The normalized error of ETDLPA(1, h) is reduced to 1.1×10−2 from 7.1×10−2 which
is the normalized error of DLPA(h), and the normalized error of ETDLPA(2, h) is reduced to
3.2×10−3 from 1.1×10−2 which is the normalized error of ETDLPA(1, h). Although we can
conclude in this table that ETDLPA(P, h) and TDLPA(hP+1) have the same accuracy, it can be
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seen that the normalized error of ETDLPA(1, h) and ETDLPA(2, h) are slightly larger than that
of TDLPA(h2) and TDLPA(h3), respectively. This differences are resulted from the different
representation of the remained error terms. For example, the dominant error term of TDLPA(h2)
and ETDLPA(1, h) are a1h2 and −2a2h2, respectively. The computational efficiency of the ET-
DLPA is cleared by comparing the involved multiplications of the ETDLPA and the TDLPA in
Table 1. The multiplications of ETDLPA(1, h) are less than those of TDLPA(h2) by the factor
of 1/64, in spite of the fact that ETDLPA(1, h) and TDLPA(h2) have the same accuracy. This
computational efficiency of the ETDLPA is more increased for higher P as seen by comparing
the multiplications of ETDLPA(2, h) and TDLPA(h3) in Table 1. The coupling coefficient com-
puted by ETDLPA(2, h) and TDLPA(h) are plotted in Fig. 2 for the illustrative purpose. We
can see the large gap between the TDLPA(h) and the exact value, but the result of ETDLPA(2,
h) can not be discriminated from the exact value with the naked eye in this figure. Also, we
can see, again, the similar shape between the computed coupling coefficients and the impulse
response as mentioned in [1].

In Table 2, the layer thickness is decreased from 0.1 to 0.01 and the simulation conditions
except for the layer thickness are same as Table 1. In this table, the trend of the normalized error
and the multiplications are similar to Table 1, and the accuracy and the computational efficiency
of the ETDLPA can be shown more clearly. The computational advantage of the ETDLPA is
more increased for the smaller layer thickness. The running time of ETDLPA(2, h) using the
latest PC is less than one second, but the running time of TDLPA(h3) is greater than 168 hours.

4. Conclusions

We have proposed the ETDLPA that synthesizes nonuniform FBG more accurately than the
conventional TDLPA, under comparable computational complexity. The accuracy and the com-
putational efficiency of the ETDLPA have been studied theoritically and verified using numeri-
cal examples, concluding that the proposed ETDLPA resolves the tradeoff between the compu-
tational complexity and the accuracy of the conventional TDLPA. The ETDLPA is applicable
to various optical devices that operate under the one-dimensional inverse scattering principle.

Appendix A: Error formula of the TDLPA

We discuss briefly the discretization process of Eq. (1) and derive Eq. (2). It is well known that
the continuous problem represented by Eq. (1) can be discretized as the equispaced discrete
model, and the TDLPA computes the coupling coefficient using this discrete model. However,
for the self-contained derivation of Eq. (2), we start from the fundamental matrix model for
a uniform grating to get the discrete model, as done in [2, 3]. The solution of Eq. (1) for the
uniform grating of length h is given by [2, 3],

[
U(z+h,δ )
V (z+h,δ )

]
= F

[
U(z,δ )
V (z,δ )

]
, (25)

where the transfer matrix F is

F =

[
cosh(γh)+ i δ

γ sinh(γh) q∗
γ sinh(γh)

q
γ sinh(γh) cosh(γh)− i δ

γ sinh(γh)

]
(26)

and γ2 = |q|2 −δ 2. To discretize Eq. (1), the approximation of F is given by [2]

F ≈ F̂ = TR, (27)
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where

T =

[
exp(iδh) 0

0 exp(−iδh)

]
,R =

[
cosh(|q|h) q∗

|q| sinh(|q|h)
q
|q| sinh(|q|h) cosh(|q|h)

]
. (28)

From the Taylor series expansion, we get

F11 = cosh(γh)+ i
δ
γ

sinh(γh) =

(
1+

γ2h2

2
+O(h4)

)
+ i

δ
γ
(
γh+O(h3)

)

= 1+ iδh+
γ2h2

2
+O(h3) (29)

F̂11 = exp(iδh)cosh(|q|h) =
(

1+ iδh− δ 2h2

2
+O(h3)

)(
1+

|q|2h2

2
+O(h4)

)

= 1+ iδh+
γ2h2

2
+O(h3), (30)

F21 =
q
γ

sinh(γh) =
q
γ
(
γh+O(h3)

)
= qh+O(h3), (31)

F̂21 = exp(−iδh)
q
|q| sinh(|q|h) = (1+O(h))

(
q
|q|
(|q|h+O(h3)

))

= qh+O(h2), (32)

where Ai j is the (i, j) entry of the matrix A. Therefore, the accuracy of Eq. (27) is O(h2). The
matrix R can be rewritten into the familiar hyperbolic rotation matrix [3],

R = (1−|κ(z)|2)−1/2
[

1 −κ∗(z)
−κ(z) 1

]
, (33)

where

κ(z) = − tanh(h|q(z)|) q∗(z)
|q(z)| . (34)

This approximation means that the coupled mode equations can be discretized as the equispaced
discrete reflectors. The matrix R explains the interaction of the waves using the reflection coef-
ficient κ(z) at the grating position z, and the matrix T describes the propagation of the waves in
the homogeneous interval (z,z+h). The reflection coefficient κ(z) can be approximated using
the Taylor series expansion of the hyperbolic tangent function in Eq. (34) as follows,

κ(z) =−hq∗(z)+O(h3). (35)

Note that the accuracy of Eq. (35) does not degrade the accuracy of Eq. (27) because the accu-
racy order of Eq. (35) is higher than that of Eq. (27).

The final form of the discretization of Eq. (1) is given by
[
Ûh(z+h,δ )
V̂h(z+h,δ )

]
=

[
exp(iδh) 0

0 exp(−iδh)

]
(1−|hq(z)|2)−1/2

[
1 hq(z)

hq∗(z) 1

][
U(z,δ )
V (z,δ )

]
, (36)

where Ûh and V̂h are used to discriminate between the approximated wave variables computed
by Eq. (36) with the layer thickness h and the exact wave variables U and V , and the accuracy
of this discretization is O(h2).
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The space-time representation of Eq. (36) is obtained by the inverse Fourier transforms of
Eq. (36) as follows [3],[

ûh(z+h, t +h)
v̂h(z+h, t −h)

]
= (1−|hq(z)|2)−1/2

[
1 hq(z)

hq∗(z) 1

][
u(z, t)
v(z, t)

]
, (37)

where u, v, ûh and v̂h are the inverse fourier transform of U , V , Ûh and V̂h, respectively, and the
accuracy of this discretization is also O(h2). Using Eq. (37), we can compute the discretized
wave variables ûh and v̂h with the accuracy O(h2), and thus, we can write as follows,

ûh(z+h, t +h) = u(z+h, t +h)+
∞

∑
l=2

αlh
l , (38)

v̂h(z+h, t +h) = v(z+h, t +h)+
∞

∑
l=2

βlh
l , (39)

where αl and βl are independent with h. These power series representations follow from the
Taylor series expansion used for the derivation of Eq. (36) and Eq. (37). From the causality
of the wave propagation, the reflection coefficient can be computed from Eq. (37) as follows
[17, 18]

hq̂(z+h,h) =
v̂h(z+h,z+h)
ûh(z+h,z+h)

, (40)

where q̂(z+h,h) is the coupling coefficient reconstructed by the TDLPA with the layer thick-
ness h at the position z+ h. Inserting Eq. (38) and Eq. (39) into Eq. (40), it is easy to see that
we can rewrite Eq. (40) as follows,

hq̂(z+h,h) =
v(z+h, t +h)
u(z+h, t +h)

+
∞

∑
l=2

γlh
l , (41)

where γl is independent with h.
Furthermore, we investigate the relation between v(z+h,t+h)

u(z+h,t+h) and q(z) in Eq. (41). If the arrival
time of the right-propagating wave u at position z is t, the left-propagating wave v cannot exist
at position z+h for a time lower than t due to the causality of the wave propagation. Therefore,
we get

v(z+h, t −h) = 0. (42)

The Taylor series for v(z+h, t −h) at (z, t) is

v(z+h, t −h) = v(z, t)+hv(1)(z, t)+
∞

∑
l=2

hl

l!
v(l)(z, t), (43)

where

v(n)(z, t) =

(
∂
∂ z

− ∂
∂ t

)n

v(z, t). (44)

From the space-time representation of Eq. (1), we know that

v(1)(z, t) =

(
∂
∂ z

− ∂
∂ t

)
v(z, t) =−q(z)u(z, t). (45)

Inserting Eq. (42) and Eq. (45) into Eq. (43), Eq. (43) can be rewritten as

hq(z) =
v(z, t)
u(z, t)

+
∞

∑
l=2

hl

l!
v(l)(z, t)
u(z, t)

. (46)
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Therefore,

hq(z+h) =
v(z+h, t +h)
u(z+h, t +h)

+
∞

∑
l=2

hl

l!
v(l)(z+h, t +h)
u(z+h, t +h)

. (47)

In Eq. (46), it is interesting to note that v(z,t)
u(z,t) means the reflection coefficient because it is the

ratio of the reflected wave v(z, t) to the incident wave u(z, t), and thus hq(z) approximates the
reflection coefficient with accuracy O(h2). Inserting Eq. (47) into Eq. (41), we get

hq̂(z+h,h) = hq(z+h)+
∞

∑
l=2

ξlh
l , (48)

where ξl is independent with h. Dividing the both sides of Eq. (48) by h, we can obtain Eq.
(2). Note that the explicit representation of αl ,βl ,γl and ξl are not detailed because these values
do not need for a numerical extrapolation. It is clear to see that Eq. (2) also holds for the
piecewise uniform model by the concatenation of the transfer matrices. The TDLPA is consisted
of Eq. (37) and Eq. (40). The accuracy of F̂ is O(h3) if the discrete reflector is placed at the
center of the layer as described in [2]. However, although the accuracy order of F̂ is increased
from O(h2) to O(h3), it cannot increase the accuracy order of Eq. (2) because the accuracy of
Eq. (46) is O(h2). Moreover, Eq. (37) is appropriate for the general identification problem of
the local reflectivity in spite of the lower accuracy order by one.

Note that the TDLPA is appropriate for the parallel computation based on the genera-
tor matrix representation [17]. The TDLPA needs only O(N) computing time units with N-
processors [17–19], where N is the total number of layers. See the Chapter 10 of [19] for the
detailed procedure of the parallel implementation of the TDLPA.
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