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Abstract: Models with anomalous U(1) gauge symmetry contain various superfields

which can have nonzero supersymmetry breaking auxiliary components providing the origin

of soft terms in the visible sector, e.g. the U(1) vector superfield, the modulus or dilaton su-

perfield implementing the Green-Schwarz anomaly cancellation mechanism, U(1)-charged

but standard model singlet matter superfield required to cancel the Fayet-Iliopoulos term,

and finally the supergravity multiplet. We examine the relative strength between these su-

persymmetry breaking components in a simple class of models, and find that various differ-

ent mixed mediations of supersymmetry breaking, involving the modulus, gauge, anomaly

and D-term mediations, can be realized depending upon the characteristics of D-flat direc-

tions and how those D-flat directions are stabilized with a vanishing cosmological constant.

We identify two parameters which represent such properties and thus characterize how the

various mediations are mixed. We also discuss the moduli stabilization and soft terms in a

variant of KKLT scenario, in which the visible sector Kähler modulus is stabilized by the

D-term potential of anomalous U(1) gauge symmetry.

Keywords: Anomalous U(1) symmetry, Moduli stabilization, Supersymmetry Breaking.

http://arxiv.org/abs/1104.3274v1
mailto:kchoi@kaist.ac.kr
mailto:ksjeong@tuhep.phys.tohoku.ac.jp
mailto:okumura@phys.kyushu-u.ac.jp
mailto:yama@tuhep.phys.tohoku.ac.jp
http://jhep.sissa.it/stdsearch


Contents

1. Introduction 1

2. SUSY breaking in models with anomalous U(1) 2

2.1 SUSY breaking auxiliary components 2

2.2 Soft terms 7

3. Stabilization of the D-flat direction 10

3.1 Uplifting potential 10

3.2 Models with non-perturbative superpotential 11

3.3 Models with radiative stabilization 18

3.4 Models with non-renormalizable superpotential 20

3.5 KKLT with D-term stabilization 22

4. Conclusion 25

1. Introduction

Anomalous U(1) gauge symmetry, which will be referred to as U(1)A in the following,

appears often in 4-dimensional (4D) effective theory of string compactification. It accom-

panies a modulus T which transforms nonlinearly under U(1)A, and the holomorphic gauge

kinetic function of the model depends on T as fa ∋ kaT , where ka is a real constant. Then

the variation of fa under U(1)A cancels the anomaly due to the loops of light fermions,

realizing the Green-Schwarz (GS) anomaly cancellation mechanism [1]. The U(1)A gauge

boson receives a mass through the Stückelberg mechanism associated with the nonlinear

transformation of T , which is typically not far below the string or Planck scale. The non-

linear transformation of T also induces a moduli-dependent Fayet-Iliopoulos (FI) term [2].

It has been noticed that anomalous U(1) gauge symmetry can have a variety of interesting

phenomenological implications. It can be used to forbid dangerous interactions such as the

ones which lead to a too rapid proton decay, or to explain the smallness of some couplings

in the low energy theory. In some cases, it can be identified as a flavor symmetry that

explains the observed hierarchical fermion masses [3, 4, 5, 6].

Due to the existence of the GS modulus T and the associated FI term, anomalous U(1)

gauge symmetry can play an important role in supersymmetry (SUSY) breaking and its

transmission to the supersymmetric standard model [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In

most cases, the FI term has a vacuum expectation value (VEV) far above the weak scale,

even close to the Planck scale in some cases. Then, to avoid a too large D-term SUSY

breaking, the FI term should be cancelled by other contribution to the U(1)A D-term due
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to U(1)A charged but standard model (SM) singlet matter field X. This SM singlet X

can play another important role. In many cases, string models with U(1)A contain exotic

matter fields Φ, Φc which are vector-like under the SM gauge group, and these exotic matter

fields get a mass far above the weak scale through the Yukawa coupling to X. Then they

can be identified as the messenger for gauge-mediated SUSY breaking if the F -component

of X develops a nonzero VEV.

Therefore, models with anomalous U(1) gauge symmetry contain various sources of

SUSY breaking, including (i) the U(1)A D-term, (ii) the F -component of the GS modulus

T , (iii) the F -component of the chiral matter superfield X whose lowest component cancels

the FI term and provides a large mass to exotic matter fields, and finally (iv) the auxiliary

component of the supergravity (SUGRA) multiplet which is generically of the order of

the gravitino mass m3/2. Then the visible sector soft terms receive modulus-mediated

contribution of the order of F T and gauge-mediated contribution of the order of g2

8π2
FX

X ,

as well as the anomaly-mediated contribution of the order of g2

8π2m3/2. Furthermore, there

can be D-term contribution to scalar masses for U(1)A charged matter fields. This means

that the four well-known mediation schemes of SUSY breaking, i.e. moduli mediation

[17], gauge mediation [18, 19], anomaly mediation [20] and D-term mediation, generically

appear together in models with U(1)A.

In this paper we wish to examine the possible pattern of the mediation of SUSY

breaking in models with anomalous U(1) gauge symmetry. As we will see, the relative

strength between different mediations crucially depends on the characteristics of the D-

flat directions, and also on how the D-flat directions are stabilized. Depending upon the

detailed form of the Kähler potential and superpotential, various different mixed mediations

involving some or all of the moduli, gauge, anomaly and D-term mediations can be realized

within a relatively simple class of models.

This paper is organized as follows. In section 2, we discuss generic features of super-

symmetry breaking and the resulting pattern of soft terms in models with anomalous U(1)

gauge symmetry. In section 3, we consider a set of specific models to examine the stabi-

lization of D-flat directions under the constraint of nearly vanishing cosmological constant,

and evaluate the relative strength between different mediations in each model. Section 4

is the conclusion.

2. SUSY breaking in models with anomalous U(1)

In this section, we discuss generic aspects of supersymmetry breaking in models with

anomalous U(1) symmetry. We first examine the relations between different SUSY breaking

auxiliary components in models with U(1)A, and then discuss the resulting pattern of soft

terms.

2.1 SUSY breaking auxiliary components

In the presence of anomalous U(1) gauge symmetry, the quantum consistency of the theory

is ensured by the GS anomaly cancellation mechanism [1]. This mechanism is implemented
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by a non-linear variation of the GS modulus

T → T − δGS

2
ΛA (2.1)

under the gauge transformation

VA → VA − 1

2
(ΛA + Λ∗

A), (2.2)

where VA is the vector superfield containing the U(1)A gauge field. For the anomaly

cancellation to work, the holomorphic gauge kinetic function of the model should contain

a T -dependent piece,

fa = kaT + · · · , (2.3)

where ka is a real constant and the ellipsis stands for the T -independent part. In the

normalization convention of T for which ka = O(1), the anomaly cancellation implies

δGS

2
= O

(

1

8π2

)

. (2.4)

Since the U(1)A invariance forces the modulus Kähler potential K0 to be a function of the

gauge-invariant combination tA = T +T ∗−δGSVA, the GS mechanism dynamically induces

a modulus-dependent FI term1

ξFI =
δGS

2
∂TK0, (2.5)

while rendering the vector superfield VA massive through the Stückelberg mechanism:

∆M2
V =

g2Aδ
2
GS

2
∂T∂T̄K0, (2.6)

where gA is the U(1)A gauge coupling.

To proceed, let us consider 4D effective SUGRA model with chiral superfields ΦI =

{TM , φi}, where TM = {T, Tα} stand for generic moduli including the GS modulus T and

φi are chiral matter superfields with U(1)A charge qi. Under U(1)A, these chiral superfields

transform as

δΦI = ηIΛA, (2.7)

where the holomorphic Killing vectors ηI are given by

ηT = −1

2
δGS , ηTα = 0, ηφi = qiφi.

Since the moduli stabilization is relatively insensitive to the form of the matter Kähler

metric, we assume for simplicity that the Kähler metric of φi is independent of moduli.

1Unless specified, we will use the convention MPl = 1 throughout this paper, where MPl = 2.4 × 1018

GeV is the reduced Planck scale.
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(In fact, most of our results apply well at least qualitatively to the case when the matter

Kähler metrics are moduli-dependent.) Then the Kähler potential of the model takes the

form:

K = K0(t− δGSVA, Tα, T
∗
α) +

∑

i

φ∗
i e

2qiVAφi, (2.8)

where t = T + T ∗ and we have ignored the terms of higher order in φi which are presumed

to be suppressed by 1/MP l. The associated U(1)A gauge boson mass and D-term are given

by

M2
V = 2g2Aη

IηJ∂I∂J̄K = 2g2A

(

M2
GS +

∑

i

q2i |φi|2
)

,

DA = −ηI∂IK = ξFI −
∑

i

qi|φi|2, (2.9)

where

ξFI =
δGS

2
∂TK0, M2

GS =
δ2GS

4
∂T∂T̄K0.

From this, one easily finds

m3/2DA = ηIF J̄∂I∂J̄K =
∑

i

qi|φi|2
(

F i

φi

)∗

− 1

2
δGS

∑

M

F M̄∂T∂M̄K0, (2.10)

where m3/2 = eK/2W for the superpotential W , and the auxiliary F -component of ΦI =

{TM , φi} is defined as

F I = −eK/2KIJ̄(∂JW +W∂JK)∗.

Combining (2.10) with the stationary condition ∂I(VF + VD) = 0, one can derive [15, 21]
(

VF + 2|m3/2|2 +
1

2
M2

V

)

DA = −F IF J̄∂I∂J̄(η
L∂LK) + VDη

I∂Ig
2
A, (2.11)

where the F and D term scalar potentials are given by

VF = KIJ̄F
IF J̄ − 3eK |W |2, VD =

g2A
2
D2

A. (2.12)

This relation can be generalized to the case including an uplifting potential Vlift which

might be necessary to achieve a vacuum with nearly vanishing cosmological constant. As

long as Vlift ≪ M2
V (in the unit with MP l = 1), which is always the case in models with low

energy SUSY, the effect of Vlift in the generalized version of (2.11) can be safely ignored,

and we can apply (2.11) to the case with Vlift as well. We then find

g2ADA = −F IF J̄∂I∂J̄(η
L∂LK)

ηIηJ̄∂I∂J̄K

(

1 +O
(

m2
3/2

M2
V

))

=
1
2δGS

∑

MN FMF N̄∂T∂M∂N̄K0 −
∑

i qi|F i|2
1
4δ

2
GS∂T ∂T̄K0 +

∑

i q
2
i |φi|2

(

1 +O
(

m2
3/2

M2
V

))

. (2.13)
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In models with low energy SUSY, m2/3 and
√
DA have a VEV in TeV or multi-TeV

range (or lower than TeV). On the other hand, although it depends on the stabilization of

D-flat directions, typically there exist some U(1)A charged (but SM singlet) matter fields

having a VEV far above TeV. Also, with the Stückelberg contribution (2.6), the U(1)A
gauge boson mass MV is rather close to the Planck scale or the string scale, thus is much

higher than TeV. Then the relations (2.9), (2.10) and (2.13) give rise to

1

2
δGS∂TK0 ≃

∑

i

qi|φi|2,

1

2
δGS

∑

M

FM∂M∂T̄K0 ≃
∑

i

qi|φi|2
(

F i

φi

)

,

g2ADA ≃
1
2δGS

∑

MN FMF N̄∂T∂M∂N̄K0 −
∑

i qi|φi|2
∣

∣

∣

F i

φi

∣

∣

∣

2

1
4δ

2
GS∂T∂T̄K0 +

∑

i q
2
i |φi|2

, (2.14)

which in fact correspond to the lowest component, the F -component, and the D-component

of the equation of motion for the U(1)A vector superfield VA in the limit that VA receives

a large supersymmetric mass.

Eq. (2.14) includes relations between the moduli F -components FM , the matter F -

components F i, and the U(1)A D-term. To see the implication of those relations more

clearly, let X denote the U(1)A charged (but SM singlet) matter field with the largest

VEV, and consider the case that the FI term in DA is cancelled dominantly by qX |X|2, so

|X|2 ∼ |ξFI | ≫ DA. (2.15)

We further assume that F T and FX/X are at least comparable to other moduli and matter

F -components, respectively. Then, in the convention with qX = −1, we find

FX

X
≃
(

K ′′
0

K ′
0

)

F T ,

g2ADA ≃







(

K ′′

0

K ′

0

)2
− K ′′′

0

K ′

0

1− δGS
2

K ′′

0

K ′

0






|F T |2,

FX

X
= −m∗

3/2

(

1 +
∂XW

X∗W

)∗

, (2.16)

where the prime denotes the derivative with respect to t = T + T ∗, and the last relation is

derived from FX = −eK/2KXĪ(DIW )∗. These relations suggest that the relative ratios be-

tween the four SUSY breaking auxiliary components F T , FX ,m3/2 and DA are determined

mostly by

R1 ≡ −δGS

2

K ′′
0

K ′
0

, R2 ≡
(

DXW

X∗W

)∗

= 1 +

(

∂XW

X∗W

)∗

, (2.17)

where R1 > 0 in our convention with qX = −1. More specifically, in the basis where F T is

real, we obtain

F T :
FX

X
: m∗

3/2 : gA
√

DA ≃ δGS

2R1
: −1 :

1

R2
:

1√
R1 + 1

, (2.18)
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where the first three relations are precise, while the relative size of
√
DA is approximately

estimated under the assumption that K ′′′
0 /K ′′

0 is comparable to (or smaller than) K ′′
0 /K

′
0,

which holds true in most cases. In the subsections 3.2 and 3.3, we will discuss explicit

examples in which the D-flatness is achieved as (2.15), and therefore the ratios between

the SUSY breaking auxiliary components are given by (2.18).

Let us now discuss the possible ranges of R1 and R2. The first possibility is that

K ′′
0 ∼ K ′

0, which would result in

R1 = O (δGS) = O
(

1

8π2

)

. (2.19)

An example for such case is provided by the modulus Kähler potential

K0 ≃ −n0 ln(T + T ∗ − δGSVA) (2.20)

for T stabilized at a value of order unity.

Another even more interesting possibility is that T is stabilized at near a point with

ξFI =
1
2δGSK

′
0 = 0, which would give

R1 = O(1) or ≫ 1. (2.21)

This would be a plausible scenario if the Kähler potential admits a limit with ξFI = 0,

or more generally a limit with ξFI far below M2
P l, since ξFI = φi = 0 is a point of

enhanced (approximate) symmetry2 and satisfies the equation of motion in the limit to

ignore SUSY breaking effects. Then a (local) minimum of the scalar potential with nonzero

but small VEV of |X|/MP l can be developed by small SUSY breaking effects, which results

in a tiny VEV of ξFI/M
2
P l ≃ −|X|2/M2

P l. It has been known that many brane models

constructed within type IIA or IIB string theory admit supersymmetric brane configuration

with smooth background spacetime geometry, which gives rise to an anomalous U(1) gauge

symmetry with ξFI = 0 [22]. In addition, it has recently been noticed that heterotic string

compactification also can give rise to such a solution with ξFI = 0 [23], which is at the

boundary of the Kähler moduli space in which the Hermitian Yang-Mills equations are

satisfied. There are also examples that ξFI = 0 correspond to a singular limit of collapsing

cycle (or orbifold) [24]. So an anomalous U(1) symmetry with ξFI = 0 somewhere in

moduli space is not unusual, but appears quite often in phenomenologically interesting set

of string compactifications.

The value of R2 is determined mostly by the mechanism to stabilize the D-flat direc-

tions involving X. In case that X is the dominant matter field which cancels the FI term,

there is only one relevant D-flat direction described by Xe−2T/δGS . However, if there exists

additional matter field Y having an opposite U(1)A charge and comparable VEV, there

will be additional D-flat direction described by a U(1)A invariant holomorphic monomial

of X and Y . If the superpotential of the model is independent of these X-dependent D-flat

directions, so ∂XW = 0, by definition R2 has a value close to the unity. In this case, the

D-flat directions should be stabilized by nontrivial structure of the Kähler potential which

2Note that DA = 0 and the global part of U(1)A is restored at this point.
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might be induced by radiative corrections. Another possibility is that the superpotential

contains a higher dimensional term depending on X, e.g. ∆W ∼ X3Y for qY = −3qX ,

and then X is stabilized by the competition between the supersymmetric potential |∂XW |2
and the SUSY breaking terms controlled by m3/2 ∼ W/M2

P l, e.g. an A-term of the form

m3/2X∂XW or a scalar mass term of the form −m2
3/2|X|2. Such setup stabilizes the D-flat

direction at a (local) minimum satisfying

|∂XW |2 ∼ m3/2X∂XW or m2
3/2|X|2, (2.22)

for which

R2 = 1 +

(

∂XW

X∗W

)∗

= O(1). (2.23)

It is also possible that |R2| has a value much smaller or much larger than the unity. For

instance, if theD-flat direction Xe−2T/δGS is stabilized by a nonperturbative superpotential

∆W ∼ Xne−2nT/δGS at near the supersymmetric solution with DXW = 0, we have

|R2| ≪ 1. (2.24)

In other case that the superpotential provides spontaneous SUSY breaking in the global

SUSY limit, e.g. through the Polonyi term of the form ∆W ∼ e−2T/δGSX, it is also possible

that

|R2| ≫ 1. (2.25)

In this case, the condition for vanishing cosmological constant provides an upper limit

|R2| ∼
∣

∣

∣

∣

∂XW

XW

∣

∣

∣

∣

. O
(

MP l
√

|ξFI |

)

, (2.26)

where we have used |X|2 ≃ |ξFI | together with the observation that |∂XW |2 . O(|W |2/M2
P l)

in order for the cosmological constant to be nearly vanishing.

The above discussion implies that even within a relatively simple class models a variety

of different patterns of SUSY breaking can be realized, depending on the characteristics of

D-flat directions and how those D-flat directions are stabilized. In more complicate situa-

tion in which there exist multiple number of moduli and/or of U(1)A-charged matter fields

providing non-negligible amount of SUSY breaking, there can be more model-dependent

variation in the pattern of SUSY breaking. In the next section, we will examine a set of

simple models realizing the scenarios considered above, and evaluate the values of R1 and

R2 in those models.

2.2 Soft terms

The SUSY-breaking auxiliary components F T , FX , m3/2 and DA can generate soft SUSY-

breaking masses in the visible sector through various mediation mechanisms as described

below.
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A) Modulus mediation: Since the gauge kinetic function fa ∋ kaT , the F -term of the

GS modulus generates the gaugino masses as

Ma(MM) = F T∂T lnRe(fa) =
kag

2
a(Λ)

2
F T , (2.27)

at a scale Λ close to the Planck or string scale [17]. Similarly the T -dependence of matter

wave functions gives rise to soft scalar masses which are generically of O(|F T |2):

m2
i (MM) = −|F T |2∂T∂T̄ ln(e−K0/3Zi), (2.28)

where Zi is the Kähler metric of the matter superfield φi.

B) Gauge mediation: Soft masses can receive a gauge-mediated contribution if there

exist gauge-charged messenger fields which couple to X [18, 19]. Indeed, in most of the

known potentially (semi)realistic string models with U(1)A, there exist exotic matter fields

Φ, Φc which are vector-like under the SM gauge group and become massive through the

Yukawa coupling

∆W = yΦXΦΦc. (2.29)

Then, gaugino masses are generated at the messenger scale ΛΦ = λΦ〈X〉 according to

Ma(GM) = −NΦg
2
a(ΛΦ)

16π2

FX

X
, (2.30)

where NΦ is the number of Φ + Φc which are assumed to form 5 + 5̄ of SU(5). Gauge

mediation induces soft scalar masses also, giving

m2
i (GM) = O

(

(

1

8π2

FX

X

)2
)

. (2.31)

An interesting feature of the gauge mediation in models with U(1)A is the contribution

to scalar masses originating from DA. Because ΦΦc carries a U(1)A charge qΦ + qΦc = 1

(note that we use the convention qX = −1), the supertrace of the messenger mass matrix

is non-vanishing due to the D-term contribution. As a result, gauge-mediated soft scalar

masses contain the piece [25]

δm2
i (GM) ≃

∑

a

Ca
i g

4
a

NΦ ln(Λ/ΛΦ)

(8π2)2
g2ADA, (2.32)

where Ca
i is the quadratic Casimir of φi. This piece can be important for matter fields

with qi = 0 when g2ADA & |FX/X|2.
C) Anomaly mediation: Supergravity always mediates SUSY breaking through the

conformal anomaly [20]. This effect can be described by introducing the supergravity

conformal compensator C with an F -component:

FC = m∗
3/2 +

1

3
F I∂IK, (2.33)
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Figure 1: Relative strength of each mediation. Either modulus, gauge, or anomaly mediation

dominates over the other two in the blue region, while mixed mediations are realized in the red

and green regions. The dashed blue line is the contour for a given value of msoft(D)/m̂soft, where

m̂soft is the biggest of msoft(MM,GM,AM).

which is generically of the order3 of m3/2. In this formulation, due to the super-Weyl

invariance, the C-dependence of physical gauge couplings and wavefunction coefficients is

determined by the renormalization group running, which results in

Ma(AM) =
βa
ga

FC = O
(m3/2

8π2

)

,

m2
i (AM) = −1

4

dγi
d lnµ

∣

∣FC
∣

∣

2
= O

(

(m3/2

8π2

)2
)

, (2.34)

where βa = dga/d ln µ and γi = d lnZi/d lnµ are the gauge beta-function and the matter

anomalous dimension, respectively.

D) D-term contribution: In the presence of anomalous U(1)A, there can be a D-term

contribution to the soft scalar mass for U(1)A charged matter fields:

m2
i (D) = −qig

2
ADA, (2.35)

where qi denotes the U(1)A charge of the corresponding matter field.

Let us now examine the relative importance of these mediations in the case that

|X|2 ∼ |ξFI | ≫ DA (2.36)

and F T and FX/X are at least comparable to other moduli and matter F -components,

respectively. In such case, the ratios between auxiliary components are estimated as (2.18),

and then we find the following order of magnitude relation between different mediations:

msoft(MM) : msoft(GM) : msoft(AM) : msoft(D) ∼ 1

R1
: 1 :

1

R2
:

8π2

√
R1 + 1

. (2.37)

3In some case such as the no-scale model, there can be a cancellation between m3/2 and 1
3
F I∂IK, which

would result in |FC | ≪ |m3/2|.
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Note that the ratios between the modulus, gauge and D-term mediations are determined

essentially by a single parameter R1, while the relative importance of anomaly mediation

is determined by R2. Fig. 1 shows the relative strength of modulus, gauge, and anomaly

mediation as a function of R1 and R2. Also shown in the figure is the contour of the ratio

between msoft(D) and the biggest of msoft(MM), msoft(GM) and msoft(AM). As we have

noticed, both R1 and R2 are quite model-dependent and can have a wide range of values.

In the subsections 3.2 and 3.3, we will discuss a set of simple models in which the SUSY

breaking auxiliary components are given by (2.18), and therefore the soft masses obey the

relation (2.37). In the subsequent subsections, we will consider other type of models which

require a separate discussion as the relation (2.18) does not apply.

3. Stabilization of the D-flat direction

In this section, we explore with explicit examples how the D-flat directions in models with

U(1)A can be stabilized at a phenomenologically viable (meta-stable) vacuum with nearly

vanishing cosmological constant. We will consider two different types of models, one in

which the D-flatness is achieved mostly by the cancellation between ξFI and the matter

field with the largest VEV, and the other in which the D-flatness is achieved mostly by

the cancellation between two matter fields with opposite U(1)A charges. For the first type

of models discussed in the subsections 3.2 and 3.3, the simple relations (2.18) and (2.37)

are satisfied, so the structure of mixed mediation is determined by R1 and R2. On the

other hand, (2.18) and (2.37) do not apply to the second type of models discussed in the

subsections 3.4 and 3.5. Our results show that various different mixed mediations can be

realized within a relatively simple class of models.

3.1 Uplifting potential

Quite often, SUSY breaking by U(1)A charged fields alone cannot give a nearly vanishing

cosmological constant, and then one needs to introduce additional SUSY breaking providing

an uplifting potential for de-Sitter or Minkowski vacuum solution. If U(1)A charged fields

all get a mass ≫ m3/2, the stabilization would not be affected significantly by the uplifting

potential. However, in case that some D-flat direction has a mass . m3/2, the uplifting

potential can play an important role for the stabilization. This means that one needs

to include the uplifting potential explicitly in the analysis in order to draw a reliable

conclusion on the stabilization. To be specific, here we will consider a particular form

of uplifting potential which originates from a sequestered SUSY breaking sector in which

SUSY is non-linearly realized.

Then the full scalar potential of the model can be derived from the following 4D

SUGRA action:
∫

d4θ CC̄
(

−3e−K/3 +CC̄M4Λ2Λ̄2
)

+

(
∫

d2θ C3W + h.c.

)

, (3.1)

where C is the chiral compensator superfield introduced to encode the SUSY breaking

effects due to the auxiliary component of the SUGRA multiplet, K and W are the conven-

tional Kähler potential and superpotential of the model, and Λ2Λ̄2 is the Volkov-Akulov
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(VA) action of the Goldstino superfield Λα = θα+ 1
M2λ

α, where λα is the Goldstino fermion.

Here the C-dependence of the action is determined by the super-Weyl invariance. The VA

action might be a low energy consequence of spontaneous SUSY breaking at some high

energy scale, e.g. a low energy realization of the action
∫

d4θCC̄

(

ZZ̄ − Z2Z̄2

M2
1

)

+

(∫

d2θ C3M2
2Z + h.c.

)

, (3.2)

where Z is a Polonyi field, and M1 ∼ M2 ≫ m3/2 are constant mass parameters. Alterna-

tively it might represent the effect of anti-brane stabilized at the tip of warped throat in

KKLT-type compactification [26]. In the former case, the Goldstino scale M is determined

as M ∼ M1 ∼ M2, while in the latter case M is determined by the red-shifted tension of

anti-brane. After integrating out all auxiliary components and choosing the Einstein frame

condition for the lowest component of the compensator superfield C0 = eK/6, one finds

that the full scalar potential is given by

VTOT = VSUGRA + Vlift, (3.3)

where

VSUGRA = VF + VD =
(

KIJ̄F
IF J∗ − 3eK |W |2

)

+
g2A
2
D2

A (3.4)

is the conventional SUGRA potential and

Vlift = M4e2K/3 (3.5)

is the uplifting potential from the VA action.

3.2 Models with non-perturbative superpotential

A natural source of moduli potential in string theory is non-perturbative effect such as

stringy instanton or hidden sector gaugino condensation. So let us discuss first the stabi-

lization of D-flat direction by non-perturbative superpotential. For simplicity, we consider

the case that the GS modulus does not have a Kähler mixing with other SUSY breaking

moduli, and the FI term is cancelled mostly by the U(1)A charged matter field X with the

largest VEV. Since the moduli-dependence of the matter Kähler metric does not change the

essential feature of stabilization, it is sufficient to consider the case of moduli-independent

matter Kähler metric. Then the Kähler potential relevant for our discussion is given by

K = K0(t− δGSVA) +X∗e−2VAX, (3.6)

where K0 can take an arbitrary form. The non-perturbative superpotential generically

takes the form

Wnp ∝ e−2nT/δGSXn (3.7)

with an integer n > 0 and δGS > 0. Since we need to stabilize X at a scale far above

TeV, it is desirable that X has a flat potential in the global SUSY limit when the D-flat

direction is mostly X. This is achieved when n = 1, so we consider

W = ω0 +Ae−2T/δGSX, (3.8)
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where A is a constant of order unity4 and ω0 is a small constant of O(m3/2M
2
P l).

For the Kähler potential (3.6) and the superpotential (3.8), it is straightforward to see

that the VEV of arg(e−2T/δGSX) is fixed by the F -term potential at

arg(e−2T/δGSX) =

{

arg
(

ω0

A

)

+ π for R1 <
1−ξFI

2−|X|2
,

arg
(

ω0

A

)

for R1 >
1−ξFI

2−|X|2 ,
(3.9)

where R1 = −δGSK
′′
0 /2K

′
0 as defined in (2.17) and ξFI = δGSK

′
0/2. Meanwhile, one

combination of Im(T ) and arg(X) remains unfixed, and is absorbed into the U(1)A gauge

boson. After replacing arg(e−2T/δGSX) with its VEV, the remaining t = T + T ∗ and |X|
can be fixed by the stationary condition

∂t,|X| (VSUGRA + Vlift) = 0 (3.10)

under the constraint

〈VSUGRA + Vlift〉 = 0. (3.11)

To proceed, let us first consider the case with

R1 ≪ 1. (3.12)

We find that in this case the uplifting potential can be treated as a small perturbation, so

one can start with a solution of

∂t,|X|VSUGRA = 0. (3.13)

Then the stationary conditions for VSUGRA give rise to

g2ADA = − 1
δGS
2 K ′′

0

(

V ′
F + (∂t ln g

2
A)VD

)

,

V̇F =
2|X|2
δGS
2 K ′′

0

(

V ′
F + (∂t ln g

2
A)VD

)

, (3.14)

where the prime and dot denote the derivatives with respect to t and ln |X|, respectively.
The second relation above determines how the D-flat direction is fixed by the F -term

potential. Neglecting small corrections of O(m4
3/2/M

4
V ), the condition for the solution of

(3.14) to be a (local) minimum of VSUGRA reads

V̈F + 4
|X|4

δ2GS
4 K ′′2

0

(

V ′′
F − K ′′′

0

K ′′
0

V ′
F

)

− 4
|X|2

δGS
2 K ′′

0

V̇ ′
F > 0. (3.15)

Note that a supersymmetric solution of (3.14) leads to V̇F = V ′
F = 0 and DA = 0.

4Note that A can always be made to be of order unity through a constant shift of T . We have also

chosen the normalization convention of T for which δGS = O(1/8π2). Whenever we use an explicit form of

the modulus Kähler potential, it is defined in such field basis.
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It turns out that, in the limit R1 ≪ 1, the equations (3.14) have a unique solution which

is supersymmetric and automatically fulfills the (meta)stability condition (3.15) regardless

of the form of K0. The minimum of VSUGRA is given by

|X|2 = −δGS

2
K ′

0,
∣

∣

∣

∣

A

ω0

∣

∣

∣

∣

e−t/δGS =
|X|

1− |X|2 ≃ |X|, (3.16)

and the vacuum solution of VTOT can be obtained by taking into account the small shift

from this solution induced by Vlift. It is then easy to find that the vacuum solution of VTOT

gives

F T ≃ δGS

2

3∂t lnVlift

K ′
0

m3/2 = δGSm3/2 = O
(m3/2

8π2

)

,

FX

X
≃
(

K ′′
0

K ′
0

)

F T ≃ −2R1m3/2, (3.17)

where we have used the sequestered uplifting potential Vlift = M4e2K/3. The above result

also leads to R2 ≃ 2R1. The D-flat direction, which is mostly T in this case, acquires a

mass of ∼ m3/2 ln(MP l/m3/2) ≫ m3/2, and this is the reason why F T ≪ m3/2.

Another limit for which the analysis is straightforward is the case with

R1 ≫ 1. (3.18)

Since the non-perturbative superpotential stabilizes the GS modulus at t/δGS ≫ 1 in the

field basis with A = O(1), it is plausible to assume that the modulus Kähler potential

satisfies
∣

∣

∣

∣

∣

(

δGS

2

)k−2 ∂k
t K0

K ′′
0

∣

∣

∣

∣

∣

.

(

δGS

t

)k−2

≪ 1 (k ≥ 3) (3.19)

at the stationary point of VSUGRA. We then find that VSUGRA can have a SUSY breaking

minimum at

|X|2 = −δGS

2
K ′

0 +O
(

m2
3/2M

2
P l

M2
V

)

,

∣

∣

∣

∣

A

ω0

∣

∣

∣

∣

e−t/δGS =

(

R1 +O
(

M2
V

M2
P l

))

|X|, (3.20)

for MP l ≫ MV ≫ (m3/2MP l)
1/2. It is straightforward to show that the above field

configuration satisfies the stability condition (3.15) and leads to

〈VSUGRA〉 = eK |ω0|2
(

−3 +R1
M2

GS

M2
P l

+O
(

M2
GS

M2
P l

))

, (3.21)

where the second term in the brackets is the contribution from FX , and thus R2 ≃ R1 at

the minimum of VSUGRA. The above form of the vacuum energy density suggests that one
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can get a de-Sitter or Minkowski minimum without introducing an uplifting potential, if

R1 = O
(

M2
Pl

M2
GS

)

= O
(

1

δ2GS

)

. (3.22)

In this case, X (approximately) corresponds to the D-flat direction, and its scalar compo-

nent acquires a mass of O(m3/2MP l/MGS), while its fermionic component corresponds to

the Goldstino absorbed into the gravitino.

Unlike the case with R1 ≪ 1 or R1 ≫ 1, the analysis of the vacuum solution of

VTOT for R1 = O(1) is quite nontrivial. In such case, we need more model-dependent and

detailed analysis to make sure that there exists a (local) minimum of VTOT with vanishing

cosmological constant.

In the following, to examine explicitly the stabilization of T and X, we consider two

different forms of the modulus Kähler potential

K
(I)
0 = −n0 ln(t− δGSVA),

K
(II)
0 = 1

2K
′′
0 (t0)(t− t0 − δGSVA)

2,
(3.23)

with the superpotential and the uplifting potential given by

W = ω0 +AXe−2T/δGS ,

Vlift = M4e2K/3. (3.24)

In K
(I)
0 , T might correspond to a dilaton in the weak coupling limit or a volume modulus

in the large volume limit. On the other hand, K
(II)
0 assumes that there exists a point in

the moduli space where the FI term vanishes [22, 23, 24],

ξFI(t0) =
1

2
δGSK

′
0(t = t0) = 0, (3.25)

and then the modulus Kähler potential is expanded around t = t0. Using the field redefi-

nition T → αT + β for real α and β, we can choose the convention

|A| = 1, δGS =
1

2π2
. (3.26)

Generically K ′′
0 (t0) is expected to be of order unity, however ω0 is required to be exponen-

tially small to realize low energy SUSY. To be specific, we choose

K ′′(t0) = 1, |ω0| = e−38, (3.27)

and examine the following four examples:

Model I : K0 = K
(I)
0 with n0 = 1,

Model II : K0 = K
(II)
0 with t0 = 2.6,

Model III : K0 = K
(II)
0 with t0 = 2.1,

Model IV : K0 = K
(II)
0 with t0 = 1.9.

(3.28)
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Figure 2: Stabilization of the GS modulus t = T +T ∗ and the chiral matter ln |X | in each model.

In each figure, the blue curve corresponds to the D-flat condition, while the red curve represents

the stationary condition, (∂tDA)∂|X|VTOT − (∂|X|DA)∂tVTOT = 0. We also plot the dashed green

curve along which FT vanishes. For Model II, III and IV, R1 = 1/2 on the vertical dashed line.

Fig. 2 shows how a minimum of VTOT = VSUGRA + Vlift with vanishing cosmological

constant is developed in these examples. In each figure, the blue curve corresponds to theD-

flat condition, while the red curve represents the stationary condition5, (∂tDA)∂|X|VTOT−
(∂|X|DA)∂tVTOT = 0. Hence the point where the two curves intersect corresponds to a

stationary solution of VTOT. In Model I and II, we have two intersecting points, and the

point with smaller t is a (local) minimum, while the other point is a saddle point. The

vacuum solution can be considered as a small deviation from the supersymmetric solution

which is the intersecting point of the blue and dashed green curves in the figure, and this

small deviation is due to Vlift. On the other hand, for Model III and IV, the blue and red

curves have a unique intersecting point which is a local minimum of the potential. Here

5This stationary condition corresponds to the second relation of (3.14) for Model IV. On the other hand,

for other models, one needs to replace VF with VF +Vlift in (3.14) since the uplifting potential is needed to

cancel the cosmological constant.
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we have tuned the size of Vlift to make the vacuum solution have a vanishing cosmological

constant. We then find that the VEVs of

|X|2
M2

P l

≃ − ξFI

M2
P l

, R1 = −δGS

2

K ′′
0

K ′
0

, |R2| =
∣

∣

∣

∣

DXW

XW

∣

∣

∣

∣

(3.29)

are given by

Model I 1.6 × 10−2, 1.6× 10−2, 3.1× 10−2

Model II 1.5 × 10−2, 4.2× 10−2, 8.4× 10−2

Model III 1.6 × 10−4, 4, 3.8

Model IV 1.4 × 10−7, 4.7× 103, 4.7 × 103

(3.30)

and therefore the ratios

F T :
FX

X
: m∗

3/2 : gA
√

DA ≃ δGS

2R1
: −1 :

1

R2
:

1√
R1 + 1

(3.31)

are determined as

Model I 1.6 : −1 : 32 : 1

Model II 0.6 : −1 : 12 : 1

Model III 6× 10−3 : −1 : 0.26 : 0.45

Model IV 5× 10−6 : −1 : 2× 10−4 : 1.5 × 10−2

(3.32)

With the above results, the ratios between the modulus, gauge, anomaly and D-term

mediated soft masses in each model can be read off from the following order of magnitude

relation

msoft(MM) : msoft(GM) : msoft(AM) : msoft(D) ∼ 1

R1
: 1 :

1

R2
:

8π2

√
R1 + 1

, (3.33)

where we have assumed that there exist gauge-charged messengers Φ + Φc which become

massive through the coupling to X:

∆W = yΦXΦΦc. (3.34)

Our results indicate that the relative importance of each mediation is quite model-

dependent, particularly on the form of the modulus Kähler potential. Models I and II realize

mixed modulus-anomaly-D-term mediation, which corresponds to the mirage mediation

[27, 28, 29] with additional D-term contribution [15]. On the other hand, in Model III,

gaugino masses are determined by mixed modulus-gauge-anomaly mediation, while scalar

masses are dominated by the D-term contribution which is one or two orders of magnitudes

heavier than gaugino masses. Finally, soft masses in Model IV are determined by mixed

gauge-D-term mediation. So various different mixed mediations can be realized even within

the simple class of models discussed in this subsection.

Since the U(1)A vector superfield acquires a large supersymmetric mass, while leaving

the D-flat combination of T and lnX light, we can study the low energy dynamics of model

with an effective supergravity in which the massive U(1)A vector superfield is integrated
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out. In the limit R1 ≪ 1 or R1 ≫ 1, the massive and light degrees of freedom can be easily

identified, and therefore it is straightforward to derive the effective theory of light fields in

this limit. For instance, the relations

M2
V

2g2A
≃ 1

4
δ2GSK

′′
0 + |X|2, R1 ≃ δ2GS

4

K ′′
0

|X|2 (3.35)

suggest that the Goldstone superfield absorbed into the massive U(1)A vector superfield is

mostly lnX in the limit R1 ≪ 1, while it is mostly T in the opposite limit R1 ≫ 1.

Since it provides an efficient way to understand our results, let us derive the effective

theory explicitly in the limit R1 ≪ 1 or R1 ≫ 1. When R1 ≪ 1, the massive vector

superfield and the light D-flat direction are identified as

VH = VA − ln

( |X|
MP l

)

, T̃ = T − 1

2
δGS ln

(

X

MP l

)

, (3.36)

both of which are invariant under U(1)A. Then it is convenient to introduce the U(1)A-

invariant combination of matter fields

φ̃i =

(

X

MP l

)qi

φi, (3.37)

and rewrite the Kähler potential and superpotential in terms of VH , T̃ and φ̃i:

K = K0(t− δGSVA) +X∗e−2VAX + φ∗
i e

2qiVAφi

= K0(t̃− δGSVH) + e−2VH + φ̃∗
i e

2qiVH φ̃i,

W = ω0 +AXe−2T/δGS + λijkX
qi+qj+qkφiφjφk

= ω0 +Ae−2T̃ /δGS + λijkφ̃iφ̃jφ̃k, (3.38)

where t = T +T ∗ and t̃ = T̃ + T̃ ∗. Now the massive vector superfield VH can be integrated

out by solving the equation of motion

∂VH
K = 0, (3.39)

whose solution is given by

2

δGS
e−2VH = K ′

0(t̃) +O(δGS). (3.40)

Inserting this solution into the Kähler potential, we find the effective Kähler potential of

T̃ and φ̃i (6= X̃) is given by

Keff = K0(t̃) +O(δGS) +
∑

i 6=X

(

δGS

2

(

K ′
0(t̃) +O(δGS)

)

)−qi

|φ̃i|2, (3.41)

from which all the low energy consequences of (3.38), including the SUSY breaking auxiliary

components of light fields and the soft terms of visible sector fields, can be derived in the

approximation in which the subleading corrections suppressed by δGS are ignored.
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On the other hand, in the other limit R1 ≫ 1, the massive vector superfield and the

light matter fields (including the D-flat direction X̃) are given by

VH = VA − 1

δGS
(t− t0), φ̃i = φie

2qi(T−T0)/δGS , (3.42)

where t0 is the modulus value for which the FI term vanishes:

K ′
0(t = t0) = 0. (3.43)

We then have

K = K0(t− δGSVA) +
∑

I=X,i

φ∗
Ie

2qIVAφI

= K0(t0 − δGSVH) +
∑

I=X,i

φ̃∗
Ie

2qIVH φ̃I ,

W = ω0 +AXe−2T/δGS + λijkX
qi+qj+qkφiφjφk

= ω0 +Ae−2T0/δGS X̃ + λijkX̃
qi+qj+qk φ̃iφ̃jφ̃k, (3.44)

for which the solution of the equation of motion (3.39) is given by

VH = −
∑

I qI φ̃
∗
I φ̃I

2M2
GS

+O
(

|φ̃|4
M4

GS

)

, (3.45)

whereM2
GS = δ2GSK

′′
0 (t = t0)/4. The resulting effective Kähler potential and superpotential

are given by

Keff = K0(t0) +
∑

I=X,i

|φ̃I |2 −
∑

IJ=X,i

qIqJ
2M2

GS

|φ̃I |2|φ̃J |2 +O
(

|φ̃|6
M4

GS

)

,

Weff = ω0 +Ae−2T0/δGS X̃ + λijkX̃
qi+qj+qk φ̃iφ̃j φ̃k. (3.46)

One is thus led to the low energy theory where X̃ acts as a Polonyi field and is stabilized

by the same way as in sweet-spot SUSY [30]. In that scenario, the Higgs sector feels SUSY

breaking also through direct interactions with the Polonyi field, in addition to gauge-

mediated one. But, the higher dimensional operator qi|X̃ |2|φ̃i|2/M2
GS in the above effective

Kähler potential can transmit SUSY breaking not only to the Higgs fields but also to the

sfermions if they are charged under U(1)A.

3.3 Models with radiative stabilization

In some case, non-perturbative superpotential of the GS modulus might not be available

because either δGS < 0, so it is forbidden by U(1)A, or the corresponding instanton ampli-

tude is vanishing due to the zero mode structure. Even in such case, if the Kähler potential

admits a limit with ξFI = 0 or more generally a limit with ξFI far below M2
P l, for which

the D-flat direction is described by X, the scalar potential of D-flat direction can receive

a field-theoretic radiative correction which can fix the VEV of X at a proper value.
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As an example of such model, let us consider

K = K0(t− δGSVA) +
∑

i

φ∗
i e

2qiVAφi,

W = ω0 + yΦXΦΦc, (3.47)

where φi = {X,Φ,Φc} for the exotic matter fields Φ + Φc which form 5 + 5̄ of SU(5) with

the U(1)A charges satisfying qΦ + qΦc = 1, and K0 is assumed to satisfy

K ′
0(t = t0) = 0. (3.48)

It is straightforward to analyze this model if one uses the effective theory in which the

massive U(1)A vector superfield VH = VA − (t − t0)/δGS is integrated out. Using the

procedure described in the previous section (see Eqs. (3.45) and (3.46)), one easily finds

VH =
|X̃ |2
2M2

GS

+ · · · , (3.49)

and the resulting effective Kähler potential takes the form

Keff = |X̃|2 − 1

2

|X̃ |4
M2

GS

+ · · · , (3.50)

where the ellipses denote the terms involving Φ, Φc. Then the scalar potential of |X| at
tree level includes a quartic term originating from the quartic term in Keff :

(VSUGRA + Vlift)|tree =
1

2

m2
3/2

M2
GS

|X̃|4 + · · · . (3.51)

There are also radiative corrections to the scalar potential for |X|, in particular the anomaly

mediated soft scalar mass associated with the Yukawa coupling yΦXΦΦc, which is given

by

∆V = NΦy
2
Φ

(

5(5NΦ + 2)y2Φ − 16g23 − 6g22 − 2g21

)(m3/2

16π2

)2
|X̃ |2, (3.52)

where NΦ is the number of Φ+Φc, and ga are the SM gauge couplings at the scale yΦ|X|.
In order for X to develop nonzero VEV, we need

5(5NΦ + 2)y2Φ < 16g23 + 6g22 + 2g21 (3.53)

at the scale yΦ|X|. Then, the VEV of |X̃ | is determined as

〈|X̃ |〉 =
(

NΦy
2
Φ

(

16g23 + 6g22 + 2g21 − 5(5NΦ + 2)y2Φ

))1/2 MGS

16π2
, (3.54)

for which

R1 =
M2

GS

|X̃|2
=

(16π2)2

NΦy2Φ(16g
2
3 + 6g22 + 2g21 − 5(5NΦ + 2)y2Φ)

. (3.55)
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In fact, this model possesses an anomalous global Peccei-Quinn (PQ) symmetry

U(1)PQ : φ̃i → eqiαφ̃i (3.56)

which can solve the strong CP problem through the axion mechanism [31, 32]. Then the

phase degree of freedom of X̃ can be identified as the QCD axion with a decay constant

vPQ = 〈|X̃ |〉 which is constrained as 109GeV . vPQ . 1012GeV. The axion scale of the

model can be in this range if

10−5 . yΦ . 10−2. (3.57)

On the other hand, for this range of yΦ, we have

R1 ≫ (8π2)2, R2 = 1 +

(

∂XW

X∗W

)∗

≃ 1. (3.58)

Applying this result to

F T :
FX

X
: m∗

3/2 : gA
√

DA ≃ δGS

2R1
: −1 :

1

R2
:

1√
R1 + 1

, (3.59)

we find the modulus, gauge, anomaly and D-term mediated soft masses are estimated as

msoft(GM) ∼ msoft(AM) ≫ msoft(D) ≫ msoft(MM), (3.60)

and therefore soft masses in this model are determined by mixed gauge-anomaly mediation

[33, 34]. The radial scalar and fermion components of X̃ correspond to the saxion s and

the axino ã, respectively. Their masses are given by

ms ∼
m3/2√
R1

, mã ∼
m3/2

R1
, (3.61)

which suggest that the axino is the LSP in this model.

3.4 Models with non-renormalizable superpotential

In this subsection, we consider a model with additional U(1)A-charged matter Y with qY >

0, which can cancel the D-term contribution from X. Then there are two D-flat directions

in the model, parameterized by Xe−2T/δGS and XqY Y . The superpotential is allowed to

contain these two U(1)A-invariant holomorphic operators. Here we discuss only the case

when qY = −3qX = 3, and the superpotential contains X3Y , but no nonperturbative term

involving Xe−2T/δGS .

Then the Kähler potential and superpotential of the model are given by

K = K0(t− δGSVA) +X∗e−2VAX + Y ∗e6VAY,

W = ω0 + λ
X3Y

MP l
+ yΦXΦΦc, (3.62)

where the last term in the superpotential is not crucial for the stabilization of D-flat

directions, but is introduced for the gauge mediation of SUSY breaking by FX . A key
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assumption on the model is that the Kähler potential of the GS modulus admits a point

with vanishing FI term:

K ′
0(t = t0) = 0. (3.63)

We also assume for simplicity that the matter Kähler metric of X and Y are independent

of the GS modulus, however our results equally apply to the case with moduli-dependent

matter Kähler metric.

Now the U(1)A D-term is given by

g2ADA = ξFI + |X|2 − 3|Y |2, (3.64)

where ξFI = δGSK
′
0/2. In section 2 and also in the previous subsections, we were focusing

on the case that D-flatness is achieved through the cancellation between ξFI and |X|2,
yielding |ξFI | ≃ |X|2 ≫ g2ADA. Note that X was defined as the U(1)A-charged matter field

with the largest VEV. In fact, this model realizes a different scenario with

|X|2 ∼ |Y |2 ≫ ξFI , (3.65)

and as a consequence does not obey the relations in (2.16) except for the last one.

For the above Kähler potential and superpotential, one of the stationary conditions

for scalar potential takes the form

∂t (VSUGRA + Vlift) =

(

VF +
2

3
Vlift +

(

2− K ′
0K

′′′
0

K ′′2
0

)

eK |W |2
)

K ′
0

+
δGS

2
K ′′

0 g
2
ADA + (∂t ln g

2
A)

g2A
2
D2

A = 0, (3.66)

which is satisfied by the D-flat direction given by

t = t0, |X|2 = 3|Y |2. (3.67)

In the region with |X|2 ≪ M2
GS = δ2GSK

′′
0 /4, the scalar potential along this D-flat direction

is written as

VTOT ≃ eK
(

4|λ|2|X|6 − 2√
3
|λω0||X|4 − 3|ω0|2

)

, (3.68)

for Arg(X3Y ) fixed at Arg(λ∗ω0) + π by the minimization condition. Here we have set

MP l = 1, and neglected small corrections suppressed by |X|2/M2
P l. This determines the

VEVs of X and Y as

|X|2 = 3|Y |2 ≃
√
3

9|λ|m3/2MP l. (3.69)

The resulting SUSY breaking auxiliary components are given by

FX

X
=

F Y

Y
≃ −2

3
m3/2, F T = DA = 0, (3.70)
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so soft masses are determined by mixed gauge-anomaly mediation:

msoft(GM) ∼ msoft(AM) ≫ msoft(MM), msoft(D). (3.71)

For X stabilized at |X| ≪ MGS , the longitudinal component of the massive U(1)A vector

superfield comes mostly from T . The non-renormalizable superpotential term provides

masses to X and Y , which include two radial scalars s1,2, the massive angular scalar ah,

and two fermions ã1,2:

ms1 ≃
1

3
m3/2, ms2 ≃

√
3

3
m3/2, mah ≃

√
6

3
m3/2,

mã1 ≃ 0.1m3/2, mã2 ≃ 0.8m3/2. (3.72)

One combination of Arg(X) and Arg(Y ) remains unfixed.

We note that the above model possesses a PQ symmetry:

U(1)PQ : φi → eqiαφi (3.73)

which is spontaneously broken by the VEVs of X and Y . The corresponding axion scale

vPQ can take naturally an intermediate scale value

vPQ ∼
√

m3/2MP l ∼ 1011GeV, (3.74)

when m3/2 ∼ 104GeV for which msoft ∼ g2

8π2m3/2 has a weak scale size.

3.5 KKLT with D-term stabilization

In this subsection, we discuss a class of models in which multiple number of moduli, includ-

ing the GS modulus, participate in SUSY breaking. As a concrete example, we consider

a variant of KKLT scenario with multiple number of Kähler moduli, in which the visible

sector Kähler modulus T is stabilized by the D-term potential of U(1)A, while the other

Kähler moduli are stabilized by nonperturbative superpotential as in the original KKLT

scenario [26].

The motivation for this variant is the observation that instantons wrapping the visible

sector 4-cycle in KKLT setup have SM-charged zero modes of chiral fermions, and as

a result the corresponding nonperturbative superpotential of T should involve a gauge

invariant product of SM-charged chiral matter superfields [35]. This would effectively

make the nonperturbative superpotential of T vanish, and then one needs other mechanism

to stabilize the visible sector Kähler modulus. As we will see, if the model contains an

anomalous U(1)A with T being the GS modulus, and the moduli Kähler potential admits

a limit in which the FI term has a value far below M2
P l, all Kähler moduli can be stabilized

even in the absence of nonperturbative superpotential of T .

Since the generalization to the case with more moduli is straightforward, here we

consider a simple case with two Kähler moduli T and T ′, where t = T + T ∗ corresponds

to the volume of 4-cycle supporting the visible sector, while t′ = T ′ + T ′∗ stands for

hidden sector 4-cycle. We assume that there exists a nonperturbative superpotential of T ′
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generated by stringy instanton wrapping the hidden cycle, while no nonperturbative term

of T due to the fermion zero modes on the visible sector cycle. In Type IIB string theory

for KKLT compactification, the Kähler potential of Tα = {T, T ′} takes the no-scale form

at the leading order in the α′ and string loop expansion, so we consider a no-scale Kähler

potential obeying

K0(γtA, γt
′) = K0(tA, t

′)− 3 ln γ (3.75)

for arbitrary real constant γ, where tA = t− δGSVA. We further assume that there exists

a solution in the moduli space with vanishing FI term:

∂tK0 = 0, (3.76)

and explore the (local) minimum of the scalar potential near this solution6.

In the absence of nonperturbative effects breaking the axionic shift symmetry T →
T + iβ (β = real constant), the U(1)A symmetry leads to an anomalous global symmetry

U(1)PQ : φi → eiαφi, (3.77)

which can be identified as a PQ symmetry solving the strong CP problem. Then, this PQ

symmetry should be broken spontaneously by the VEV of SM singlet but U(1)A charged

matter fields at a scale between 109GeV and 1012GeV. As for those matter fields, we con-

sider the example of the previous subsection. Then the Kähler potential and superpotential

of the model are given by

K = K0(tA, t
′) +X∗e−2VAX + Y ∗e6VAY,

W = ω0 +Ae−aT ′

+ λ
X3Y

MP l
+ yΦXΦΦc. (3.78)

Here we assume for simplicity that the matter Kähler metric of X and Y are independent

of moduli, however our results equally apply to the case with moduli-dependent matter

Kähler metric. For a no-scale moduli Kähler potential, we have

Kαβ̄
0 ∂β̄K0 = −(Tα + Tα∗), Kαβ̄

0 (∂αK0)∂β̄K0 = 3, (3.79)

and

2(∂tK0)∂tK
T T̄ ′

0 + (∂t′K0)∂tK
T ′T̄ ′

0 = 0, (3.80)

where Kαβ̄
0 is the inverse of the moduli Kähler metric K0αβ̄ = ∂α∂β̄K0. With these rela-

tions, one can find

∂t (VSUGRA + Vlift) =

(

VF +
2

3
Vlift − 2

∂tK
TT ′

0

∂t′K0
eK |WT ′ |2

)

∂tK0

+
δGS

2
(∂2

tK0)g
2
ADA + (∂t ln g

2
A)

g2A
2
D2

A, (3.81)

6A simple example of such Kähler potential is the one discussed in [23]: K0 = − ln((t1 − δGSVA)(t2 +

δGSVA)
2 + 1

6
(t2 + δGSVA)

3), where t = t1− t2, t
′ = t1+ t2, and the Kähler cone is defined by t1,2 > 0. Note

that ξFI = δGS(∂1K0 − ∂2K0)/2 = 0 on the wall in the Kähler cone defined by t2 = 4t1.
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where

DA =
δGS

2
∂tK0 + |X|2 − 3|Y |2. (3.82)

The stationary condition ∂t(VSUGRA + Vlift) = 0 is thus satisfied by the field configuration

satisfying

∂tK0 = 0, |X|2 = 3|Y |2, (3.83)

for which DA = 0. On the other hand, as in the original KKLT scenario, the stationary

condition ∂t′(VSUGRA + Vlift) = 0 leads to

DT ′W =
(∂t′K0)W

ln(MP l/m3/2)

(

1 +O
(

1

ln(MP l/m3/2)

))

. (3.84)

We then find t and t′ are fixed by the conditions

∂tK0 = 0, ∂t′K0 =
aAe−aT ′

w0

(

1 +O
(

1

ln(MP l/m3/2)

))

, (3.85)

and X and Y are fixed at

|X|2 = 3|Y |2 ≃
√
3

9|λ|m3/2MP l, Arg(X3Y ) = Arg(λ∗ω0) + π. (3.86)

At this minimum, the SUSY breaking auxiliary components have VEVs as

FX

X
=

F Y

Y
≃ −2

3
m3/2, DA = 0,

F T

T + T ∗
≃ F T ′

T ′ + T ′∗
≃

m3/2

ln(MP l/m3/2)
, (3.87)

where the relation between F T and F T ′

is derived from the no-scale relation Kαβ̄
0 ∂β̄K0 =

−(Tα +Tα∗). Therefore, this variant of KKLT setup gives rise to a mixed modulus-gauge-

anomaly mediation7:

msoft(MM) ∼ msoft(GM) ∼ msoft(AM) ≫ msoft(D), (3.88)

which was dubbed as deflected (or axionic) mirage mediation [37, 38]. As in the model dis-

cussed in the previous subsection, the Goldstone boson from spontaneously broken U(1)PQ

can play the role of the QCD axion with the axion scale given by vPQ ∼
√

m3/2MP l.

7It is worth noting that, if it is not charged under U(1)A, T can alternatively be stabilized by the

uplifting potential [36]. This gives a similar pattern of SUSY breaking, while the axion scale is around the

GUT or string scale.

– 24 –



4. Conclusion

There can be various sources of SUSY breaking in models with anomalous U(1) gauge

symmetry: the U(1) D-term, the F -components of the Green-Schwarz modulus T and

the chiral matter X introduced to cancel the Fayet-Iliopoulos term, and also the SUGRA

auxiliary component of the order of m3/2. Then the visible sector soft masses generically

receive a modulus-mediated contribution of the order of F T and a D-term contribution of

the order of
√
DA as well as the anomaly-mediated contribution of the order of g2

8π2m3/2.

Most of the known (semi) realistic string models with U(1)A include also exotic SM gauge

charged matter fields Φ, Φc which become massive through the Yukawa coupling to X, and

therefore play the role of messenger for the gauge mediation of SUSY breaking by FX . In

such case, soft masses also receive a gauge-mediated contribution of the order of g2

8π2
FX

X .

In this paper, we have examined the relative strength of these modulus, gauge, anomaly

and D-term mediations in a simple class of models, and find that various different mixed

mediation scenarios can be realized depending upon the characteristics of the D-flat direc-

tions and how those D-flat directions are stabilized. A key quantity which would determine

the characteristics of the D-flat directions is the ratio between the Stückelberg contribution

to the U(1)A gauge boson mass-square and the Fayet-Iliopoulos term. Our results suggest

that although its accurate structure is quite model-dependent, it is quite common that soft

terms in models with U(1)A are not dominated by a single mediation, but determined by

a proper mixture of the moduli, gauge, anomaly and D-term mediations.
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