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The authors present a biosensor using pyrolyzed electron beam resist nanostructures as an active
conducting channel. Versatile, arbitrarily shaped nanostructures such as nanowires, nanodots, and
suspended nanobridges are fabricated by a facile electron beam resist thermal decomposition
method. The nanostructures typically show 15–21 nm thickness, 100–200 nm width, 0.6 nm
roughness, and p-type majority conduction with tailored resistivity of 5.2–0.75 � cm.
Streptavidin-biotin binding and pH dependent conductance modulation are demonstrated using
pyrolyzed resist based devices. © 2007 American Institute of Physics. �DOI: 10.1063/1.2752719�

Detection of chemical or biological species using micro-
or nanofabricated sensors is receiving great attention. In the
case of mechanical sensors,1–6 micro- or nanocantilever
bending or resonance frequency changes are monitored by
embedded piezoresistors, piezoelectric materials, or strain-
sensitive field effect transistors �FETs�. Electrical sensors for
gas or biomolecule detection were demonstrated using semi-
conductor or polymer nanowires,7–9 nanotubes,10,11 and
batch-fabricated silicon FETs.12,13 Despite the apparent ad-
vantages of nanomaterial-based sensors, there are ongoing
technological challenges such as assembly or chirality
selection.14,15 Low-cost batch fabrication of free-style, free-
standing nanostructures can improve existing nanomaterial-
and silicon-based devices and widen future nanotechnology
applications.

Carbon thin film, which is fabricated by pyrolysis of
patterned resist, shows amorphous, graphitelike characteris-
tics with tunable conductivity versus pyrolysis temp-
eratures.16–18 Because the carbon film is fabricated through
lithography processes, we can obtain free-handed micro- or
nanostructures on a silicon substrate, where the feature size
is limited by top-down lithography techniques. While elec-
trochemical behaviors and applications such as microbatter-
ies, molecular electronics, and image sensors are extensively
studied, mechanical and electrical property utilizations, espe-
cially overhanging nanostructures for sensor and actuator ap-
plications, are rarely reported.19–21

In this letter, we present fabrication of versatile carbon
nanostructures derived from electron beam resist for various
sensor and actuator applications and their utilization in bio-
sensors. Various resist shapes, including nanowires, nan-
odots, and wheels, were patterned using a negative electron
beam resist SAL-601 �Shipley Co.�, and a modified scanning
electron microscope �JSM-6400, JEOL�. Nanoscale carbon
mechanical structures are fabricated by pyrolysis of the elec-
tron beam resist pattern and sacrificial oxide etching.

Figure 1 shows an example of fabrication processes for

nanoscale carbon devices. The fabrication process starts with
0.8-�m-thick SiO2 growing by thermal oxidation onto a
4 in. Si P �100� wafer �Fig. 1�a��. A 70-nm-thick Au layer
over a 10-nm-thick Cr layer, for align markers for electron
beam lithography and metal pads, was delineated using lift-
off technique �Fig. 1�b��. Electron beam resist patterns were
fabricated through exposures at 30 keV energy, 1 �C/cm2

dose, and development with AZ300MIF for 5 min �Fig.
1�c��.

The resist pattern was converted to an amorphous carbon
phase by pyrolysis �Fig. 1�d��. The thickness of the carbon

a�Electronic mail: kclee@kriss.re.kr

FIG. 1. �Color online� Fabrication processes of nano carbon devices: �a�
thermal oxidation for diffusion barrier and isolation, �b� electrode patterning
for alignment and pads, �c� resist patterning by electron beam lithography,
�d� resist pyrolysis to obtain carbon nanopatterns, �e� connecting carbon to
pads, and �f� passivation with PMMA against electrolytes or for releasing
carbon mechanical nanodevices.
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layer obtained after pyrolysis was between 15 and 21 nm,
which was 16%–25% of the initial resist thickness of
80–110 nm. Resistivity of the carbon layer was between 5.2
and 0.75 � cm and decreased as pyrolysis temperature in-
creased.

Carbon nanopatterns were connected to source and drain
electrodes via the Au/Cr layer through electron beam lithog-
raphy and lift-off technique �Fig. 1�e��. Polymethyl meth-
acrylate �PMMA� passivation followed in order to shield
metal electrodes from liquids �Fig. 1�f��. Suspended carbon
mechanical nanostructures were fabricated by etching under-
lying the oxide layer using buffered HF.

Various carbon micro- and nanostructures, such as nano-
wires, nanodots, and nanochannels, were fabricated using
this method �Fig. 2�. Double-clamped carbon nanobridges
�130 nm wide, 15 nm thick, and 4 �m long, as shown in Fig.
2�c�� were fabricated by oxide etching with buffered HF for
3 min. The carbon nanobridges can be used as resonant sen-
sors for minuscule force or mass detection. Suspended nano-
bridges, which have a larger surface-to-volume ratio �a factor
of 2� compared to nanowires with similar dimensions, will
be useful for surface-sensitive devices such as gas sensors
and biosensors. Figure 2�d� shows a carbon microwheel on a
tungsten needle, fabricated from 5-�m-thick AZ9260 photo-
resist, which is separated from the silicon substrate by un-
derlying oxide etching. Floating micro- or nanocarbon de-
vices, such as those in Fig. 2�d�, have advantages such as
batch-fabrication and mass production without etch and
deposition processes, and also have potential applications
such as actuators, nanodust, and self-propelling
nanorobots.22

Figure 3 shows resistivity variations according to tem-
perature for films pyrolyzed between 670 and 760 °C. Car-
bon resistivity, ��T�, decreased monotonically as temperature
T increased between 90 and 300 K. We used the formula,
��T�=�0 exp��T0 /T�1/4�,23 to fit the resistivity data. For films
pyrolyzed at 700 °C, a �0 of 3.8�10−6 � cm and a hopping
barrier T0 of 1.1�107 K were obtained. Black, opaque,
smooth carbon surfaces, with root mean square roughness
below 0.6 nm and indistinguishable top and bottom sides,
were obtained using mirror-polished silicon substrates and

slow out-gassing during heat treatment. For carbon films py-
rolyzed at 700 °C, a weak p-type majority conduction carrier
with Hall coefficient of 0.44 cm3/C was measured.

Many promising applications for nanoscale devices,
such as thermistors, heaters, and interconnects, are antici-
pated using the mechanical and electrical properties of resist-
derived carbon nanostructures. Next, we studied applications
of carbon nanostructures to active channels in electrical bio-
sensors. For biosensing applications, we used carbon films
pyrolyzed at 700 °C because of the medium conductivity of
a few � cm and to avoid excess carrier density. Streptavidin
�Sigma�, which has high binding affinity to biotin, was em-
ployed as a model protein. Carbon biosensors �Fig. 4�a��
were fabricated using the processes shown in Fig. 1. After
PMMA passivation, as shown in Fig. 1�f�, O2 plasma treat-
ment at 150 mTorr and 50 W for 15 s was carried out to
increase the density of the oxygen-containing functional
groups.

The devices were incubated in 100 �l ethanol
with 50 mM 1-ethyl-3-�3-dimethylaminopropyl� carbo-
diimide hydrochloride �EDC� �Aldrich� and 50 mM
N-hydroxysuccinimide �NHS� �Aldrich� for 2 h and were
then rinsed with ethanol. The devices were kept in 100 �l
ethanol with 1 mg/ml amine-conjugated biotin for 2 h and
were then rinsed thoroughly with ethanol and phosphate
buffered saline �PBS� �pH 7.4, Bioneer Co., Korea�, respec-
tively. The carboxyl �COOH� groups on the carbon surface
were transformed using EDC/NHS into intermediates that
readily react with the NH2 groups on biotin. The biotin was
immobilized onto the carbon surface using an amide bond.

Figure 4�b� shows measurements of source-to-drain cur-
rent IDS versus time for VDS=300 mV after introduction of
0.5 mg/ml streptavidin in 10 mM PBS solution �pH 7.4�.
Whereas IDS for the biotin-unmodified control device was
not changed after streptavidin injection �inset in Fig. 4�b��,
we observed increases in IDS for the biotin-treated device
after streptavidin introduction. Carbon devices after strepta-
vidin injection also showed pH sensitivity, with increases in
IDS with pH, as shown in Fig. 4�c�. For negative gate voltage
�VGS�0�, the drain current IDS for carbon devices after

FIG. 2. Scanning electron microscopy �SEM� photomicrographs of carbon
structures fabricated from resists: �a� 250-nm-radius circular dots, �b� tri-
angles on silicon substrates, �c� 130-nm-wide, 15-nm-thick, 4-�m-long car-
bon nanobridges suspended from silicon substrate, and �d� a 1-�m-thick
microwheel on a tungsten needle. �A negative electron beam resist, SAL-
601, is used for �a�–�c�. A positive photoresist, AZ9260, is used for �d�.�

FIG. 3. �Color online� Resistivity variations vs temperature for carbon films
pyrolyzed between 670 and 760 °C. Carbon resistivity was measured by the
van der Pauw method with a Greek cross test pattern. Measured resistivity
was fitted to a formula, ��T�=�0 exp��T0 /T�1/4�. In the case of films pyro-
lyzed at 700 °C, �0 of 3.8�10−6 � cm and hopping barrier T0 of 1.1
�107 K were obtained.
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streptavidin injection increases as gate voltage VGS de-
creases, as shown in Fig. 4�d�.

In summary, we demonstrated fabrication, using a facile
electron beam resist pyrolysis method, of arbitrarily shaped,
freestanding carbon nanostructures for various sensors and
actuators applications. The nanofabrication method, based on
lithography and thermal processes, eliminates additional pro-
cesses such as reactive ion etching and provides batch-
fabricated, low-cost nanodevices. We also studied biosensing
applications of carbon nanostructures for a potential low-cost
point-of-care testing tool. We expect that the carbon nano-
structures, fabricated from combinations of resist pyrolysis
and nanomachining processes, will provide a method for
nanofabrication in NEMS and nanodevices.

This work was supported by the Brain Korea 21 program
and the National Nano Program for Applications �KOSEF
2006-04921�.
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FIG. 4. �Color online� �a� SEM photomicrograph of a fabricated carbon nanobiosensor �inset: AFM image of a carbon channel�, �b� source-to-drain current
IDS, vs time after streptavidin injection onto biotin-grafted device �VDS=300 mV, ↓: streptavidin injection� �inset: a control experiment onto biotin-untreated
device�, �c� IDS-VDS curves showing pH sensitivity for the device covered with streptavidin/biotin where IDS increases as pH increases �inset: IDS vs pH�, �d�
IDS vs gate voltage, VGS, for the device covered with streptavidin/biotin �VDS=50 mV�. For VGS�0, IDS increases as VGS decreases �inset: IDS-VDS curves vs
VGS�.
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