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Abstract 
Approximate queueing formulae are often employed for the 

practical evaluation of manufacturing system performance. 

Common approximations do not fully address practical 

issues such as idle tools with work in queue, travel time 

between stages of production, removal of lots from queue 

pending process issue resolution and the tendency of lots to 

defect from a failed server in favor of an equivalent availa-

ble server. In this paper, approximate queueing formulae 

are proposed which extend popular existing formulae. To 

test the quality of the proposed approximations, data from 

production toolsets in IBM’s 200mm semiconductor manu-

facturing fabricator is considered. It is demonstrated that 

the approximations perform well on the toolsets studied. 

Keywords 
Approximate performance evaluation, G/G/m queue, cycle 

time, server failures, cycle time offsets, hold time. 

I. INTRODUCTION 
Queueing, or waiting in line for an available server, is a 

common phenomenon in many industries including compu-

ting, manufacturing and customer service and has been stu-

died for perhaps 100 years (Erlang published his first paper 

on queueing theory in 1909, [1]). Simple closed form ap-

proximation formulae for the mean cycle time behavior of 

the G/G/m queue (potentially subject to server failures) 

have been developed and employed over the course of dec-

ades to predict, understand and plan for manufacturing sys-

tem behavior, see as a start [2, 3, 4] and the references con-

tained therein. Rough cut approximations have been em-

ployed, as in [5], in the performance evaluation of networks 

of queues by the use of approximate coupling formulae 

intended to capture the interaction between the arrival and 

departure processes within the network. Approximations are 

often used in lieu of exact numerical procedures or perfor-

mance bounds. The intuitive value of simple expressions for 

system performance coupled with their ease of use has re-

sulted in their ascendance as the primary tool for under-

standing cycle time behavior in IBM’s 200mm semiconduc-

tor wafer fabricator. Much work has been devoted to suc-

cessfully bridging the gap between measures of actual sys-

tem performance and the predictions obtained from the 

M/D/1 (or the more generic G/G/m) queue [6, 7, 8, 9, 10, 

11]. 

 

While these simple approximations can serve well to pre-

dict the behavior of many manufacturing workstations, they 

may fall short in certain applications.  When tool failure 

behavior does not imply that a lot (our term for a unit of 

work or product) must necessarily remain with a failed tool, 

the suggested approximations of [4] may not perform well.  

Further, cycle time offsets which are essentially indepen-

dent of the queueing at the workstation, such as hold time 

(during which, for example, a lot is removed from produc-

tion until a process issue is resolved) and travel from one 

workstation to another, can substantially alter the cycle time 

performance. 

 

This paper develops closed form expressions to serve as 

simple approximations to the cycle time behavior of G/G/m 

queues subject to server failures and cycle time offsets 

which address many of the issues associated with existing 

formulae. By application of the independence of queue 

lengths in a Jackson network [12] (or a BCMP network), it 

is inferred that events such as travel and holds upstream of 

a workstation result in a cycle time offset.  The offset is 

equivalent to the average time spent in travel or hold and 

independent of the queue length at the production worksta-

tion.  For workstations subject to server failures, under the 

assumption that lots need not remain at the server with 

which they initially entered service, residual life arguments 

lead to approximation formulae for the mean cycle time 

behavior.  

 

Further, once we have developed appropriate extensions to 

existing approximation formulae, we employ the approxi-

mations obtained to understand the cycle time performance 

of multi-server workstations in IBM’s 200mm semiconduc-

tor wafer fabricator.  The result is that we are able to quite 

accurately predict the cycle time performance of toolsets 

not previously amenable to such analysis using measured 

statistics such as the squared coefficient of variation of the 

interarrival times to the workstation CA
2
, the average hold 

and travel time of a lot, the time a tool is idle in the pres-

ence of available WIP (often termed idle with WIP, opera-

tor loading loss or deployment loss), tool availability and 

loading (utilization of capacity, or throughput achieved 

divided by throughput potential). 

 



The paper is organized as follows. Section II develops an 

approximation formula for the mean cycle time in a G/G/m 

queue subject to server failures drawn from a consideration 

of the approximations of [2, 4].  Here, idle instances in 

which work is present (idle with WIP, see [6]) are incorpo-

rated. The presence of hold time and travel time prior to 

arrival at the server is considered in Section III.  Section IV 

extends the approximations of Section II to the case where 

lots (units of work) are free to defect to another server in 

the event that their server fails. Residual life arguments are 

central to the development. Section V highlights the appli-

cation of the approximations to two toolsets operating at 

IBM’s 200mm semiconductor wafer fabrication facility.  

Section VI presents concluding remarks and suggests fur-

ther directions for continued work on this subject. 

II. CYCLE TIME APPROXIMATIONS FOR THE 

G/G/m QUEUE AND PRACTICAL EXTENSIONS 
A G/G/m queue (described in, for example, [4, 12]) is de-

picted in Figure 1 and consists of a waiting room to which 

lots (unit of work) arrive and m identical servers from 

which lots receive service. The interarrival times between 

lots are given by a random variable with general distribu-

tion and mean 1/λ.  The service times are dictated by a ran-

dom variable with general distribution and mean 1/µ. All 

interarrival and service times are independent. The waiting 

room is of infinite size (there is no blocking) and customers 

are served in a first-come first-served manner (FCFS). Each 

server caters to only one customer at a time and devotes all 

of its resources to completing the transaction.  If a server is 

idle it will immediately begin to serve a customer from the 

queue (if one is available and not in service with another).  

 

 
Figure 1. A depiction of a multiserver queue. 

 

One important measure of system performance for a G/G/m 

queue is the expected cycle time, defined as the mean time 

that a lot spends in queue and receiving service. Drawing 

upon the work of [2], [4] proposed the following approxi-

mation for the expected cycle time in a G/G/m queue 
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where ρ = λ/(mµ), CS
2
 is the squared coefficient of varia-

tion of the service time defined as CS
2
 = σS

2
/(1/µ)

2
 (σS 

represents the standard deviation of the service time) and 

CA
2
 is the squared coefficient of variation of the arrival time 

defined as CA
2
 = σA

2
/(1/λ)

2
 (σA represents the standard dev-

iation of the interarrival time). The approximation agrees 

exactly for the M/G/1 queue [4, 12].  

 

Consider now that a server is subject to random failures.  

Once functional, the time until a failure occurs is exponen-

tially distributed with mean mF. Once a failure occurs, the 

time until repair is generally distributed with mean mR, 

standard deviation σR and coeffiecient of variation CR (CR = 

σR /mR).  The mean availability of the server is denoted A = 

mF/( mF + mR).  For a G/G/1 queue subject to server failures 

as just detailed, in which service is resumed (no work is 

lost) following a failure and in which a lot cannot defect to 

another server (there is only one), [4] suggested the follow-

ing practical approximation: 
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Here, ρ∗ = λ/(mµΑ), 0 < ρ∗ < 1 (m = 1 in this case), and 

the following effective parameters incorporate the behavior 

imposed by the failures 
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For the M/G/1 queue subject to server failures as described, 

this approximation is exact. 

 

A natural generalization suggested by the above two formu-

lae is the following approximation for a G/G/m queue sub-

ject to server failures as above: 
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All variables in this approximation have been defined pre-

viously. A simpler and more intuitive approximation, he-

reafter referred to as the Martin Approximation, suggests 

another form for the loading terms (containing ρ*): 
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Figure 2 compares the mean cycle time approximations to 

the exact mean cycle time for an M/M/2 queue (the M/M 

implies exponential interarrival and service times) subject 

to exponential server failure and repair.  The failure para-

meters are mF = 16 hours, mR = 4 hours and 1/µ = 1 hour. 

The Factory Physics Style approximation refers to the ap-

proximation of equation (1). The approximations perform 

relatively well. 

 

A matter of practical import is idle with WIP (work in 

process), discussed in [6]. To model this phenomenon, sup-
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pose that each lot experiences a random delay prior to load-

ing (for the first time) with mean Ω and standard deviation 

σΩ, so that the server upon which the lot is being loaded is 

idle. Consider these loading events to be independent of all 

other random events.  The additional time may be consi-

dered as production time and incorporated into the service 

distribution. By doing so, the capacity loss associated with 

the idle with WIP, described in [6], is accounted for (in-

creased production time implies increased loading). 
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Figure 2.  Approximate and exact cycle time behavior 
for an M/M/2 queue with imperfect server availability. 

 

Combining idle with WIP and the approximation of (1) 

yields the following approximation for the expected cycle 

time in a G/G/m queue subject to server failures and idle 

with WIP: 
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where ρ∗ = λ(Ω + 1/µ)/(mΑ), 0 < ρ∗ < 1. The parameters to 

be used in the approximation are given as 
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Note that 1/µe is increased by the mean idle with WIP time 

Ω and the server mean availability A (since the it is as-

sumed that a lot will not defect from a failed server).  

III. CYCLE TIME OFFSETS 
Events common in manufacturing systems include the travel 

of lots from one toolset to another, the holding of lots until 

a process issue is resolved and possibly delay in the unload-

ing of a lot following its production. All of these events can 

generally be considered independent of the queue length or 

availability status of the tools at which they occur. As such, 

the elements of cycle time caused by these events is addi-

tive with the cycle time incurred queueing and in produc-

tion.   

 

If one considers the offset events as a separate queue up-

stream or downstream of the toolset itself, simplifying as-

sumptions can be made to convert the queues into a Jackson 

network [12]. Then, the cycle time resulting from the offset 

events and the cycle time resulting from the toolset are de-

coupled (independent) and additive. More general assump-

tions converting the queues into a BCMP network would 

yield the same result. 

 

Let T, H and P denote the mean travel, hold and post pro-

duction unloading delays, respectively. The approximation 

of (2) becomes: 
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where all parameters have been defined previously. The 

independence leading to the addition of the mean offset 

event times is a fundamental result of queueing network 

theory [12]. Further, this approximate form suggests that if 

hold time, travel time and post production delay time are 

reduced in a fabricator consisting of many toolsets, the 

overall cycle time for the entire fabricator will decrease. 

IV. DEFECTION OF LOTS FROM FAILED SERVERS 
The approximations of Section II may perform poorly in the 

low loading regime when lots are allowed to defect from a 

failed server and enter the head of the queue. Note that 

when ρ* = 0 in equation (1), the resulting expected cycle 

time prediction is 1/µ* = 1/(µA). Thus, if the availability is, 

for example, 80%, the cycle time prediction yields (1.25)/µ, 

independent of the number of servers!  

 

What is really expected in the low loading regime with m 

servers and lots prone to defection from a failed server is 

that no delay is incurred due to a failed server unless all 

servers are down. The expected cycle time as ρ* decreases 

to 0 can be roughly approximated by 
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where the last term is the mean residual down time faced by 

a lot arriving to a system with all servers in failure (and 

assuming deterministic repair times).  

 

The following approximation is thus suggested for G/G/m 

queues with exponential server failures, deterministic server 

repair, lot defection, idle no WIP and cycle time offsets: 
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Note that the CR
2
 term has been set to unity in the CS,E

2
 def-

nition, in agreement with the use of a deterministic repair 

time in the determination of the residual down time. To 

account for general repair time distributions, one could 

keep the CR
2
 term in the definition of CS,E

2
 and replace the 

mean residual down time mR/(m+1) by the calculated mean 

residual down time for a general repair distribution. 

 

The mean cycle time approximation of equation (3) incor-

porates many features common in practical manufacturing 

systems.  Further, as is demonstrated in the subsequent sec-

tion, approximation equation (3) performs quite well in 

predicting measured cycle performance. 

V. APPLICATION OF THE APPROXIMATIONS 
The approximation of equation (3) has been tested on mul-

tiple toolsets within IBM’s 200mm semiconductor wafer 

fabricator. Two points are worth mention.  First, very few 

toolsets actually behave as an independent G/G/m queue 

with the features described. Lot process times are a function 

of their stage of production rather than being identically 

distributed according to a single distribution. Also, the tool-

sets are not operated in isolation, but rather in a queueing 

network. Second, at IBM’s 200mm semiconductor wafer 

fabricator, few equivalent toolsets are grouped in a single 

geographic area. Even when geographically close, tools 

may be assigned to specific operators. In addition, most 

toolsets are purposely limited in deployment (so that a lot is 

not qualified to receive processing from all tools in a group) 

to ease the detection of yield problems. As a consequence, 

the practical number of servers that are available to a given 

lot is on the order of 3 for many toolsets.  There are some 

notable exceptions, including the chemical-mechanical po-

lishing tools, each of which is virtually indistinguishable. 

 

To apply the approximation of equation (3), all parameters 

specified must be determined.  Standard statistical analysis 

can be applied to the tool and lot logistics databases in a 

manufacturing facility to obtain the statistics. IBM’s 

200mm semiconductor wafer fabrication facility has devel-

oped many automated data analysis tools [6, 8] to enable 

the acquisition of needed data. In particular, idle with WIP 

time, travel time, hold time, post production unloading 

time, utilization (to some extent) and tool availability are 

generated automatically for each toolset. The other statistics 

were calculated separately. In addition, many parameters, 

such as idle with WIP and travel time, may be a function of 

fabricator loading. The approximation of equation (3) as-

sumes that its parameters do not change with loading. 

 

 
Figure 3. Measured and predicted cycle time for a tool-

set in IBM’s 200mm wafer fabrication facility. 
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Figure 4. Measured and predicted cycle time for anoth-

er toolset in IBM’s 200mm wafer fabrication facility. 

 

Figure 3 provides an example of the application of the ap-

proximation of equation (3) to a toolset with substantial 

cycle time offsets. The actual performance, measured from 

a production workstation, is very close to our predicted 

performance curve (referred to as the Alternate Prediction 

in the figure). Figure 4 provides a second example in which 

cycle time offsets and a large number of servers play key 

roles. Again, the measured cycle time performance is rela-

tively close to the approximation of equation (3). In each 

figure, the cycle time performance for an M/D/1 queue is 

provided for comparison. The cycle time depicted has been 

normalized by dividing by (1/µ) and is referred to as X-

Factor. 

 

VI. CONCLUDING REMARKS 
To approximate the mean cycle time behavior of practical 

models of manufacturing systems, extensions to the stan-

dard approximations for G/G/m queues were presented. A 
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common manufacturing phenomenon known as idle with 

WIP was incorporated. Overhead which are independent of 

the queue length, such as travel, hold and post production 

unloading delays were explicitly incorporated. In addition, 

the incorporation of realistic lot defection behavior in the 

presence of server failures was considered.   

 

The resulting approximations were employed to create an 

approximate mean cycle time performance curve for tool-

sets within IBM’s 200mm semiconductor wafer fabricator. 

Using data drawn from actual toolset behavior, the approx-

imations were generated and compared with the measured 

mean cycle time of the toolset. The results demonstrate that 

the approximations perform well. 

 

Future directions could include the application of the ap-

proximation to networks of queues, development of an al-

gorithm for the determination of the number of servers that 

are available to each lot and the modeling of idle with WIP 

as a function of workstation loading. Also, increased rigor 

could be applied to the approximations developed for lots 

prone to defection from a failed server. 
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