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X-ray diffraction �XRD� and selected area electron diffraction pattern �SADP� results showed that
the �Ga1−xMnx�N nanorods had preferential c-axial growth direction. Transmission electron
microscopy �TEM� and high-resolution TEM �HRTEM� images showed that one-dimensional
�Ga1−xMnx�N nanorods without defects had c-axis-oriented crystalline wurzite structures. Atomic
arrangements for the �Ga1−xMnx�N nanorods grown on the Al2O3 �0001� substrates are described on
the basis of the XRD, the TEM, the SADP, and the HRTEM results. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2902321�

Diluted magnetic semiconductor �DMS� quantum struc-
tures utilizing both ferromagnetic and semiconductor nano-
structures have been attractive because of interest in investi-
gations of fundamental physics1–3 and their potential
applications in spintronic devices.4–6 Among the various
kinds of DMS materials, �Ga1−xMnx�As DMS thin films
grown on GaAs substrates have been the most extensively
studied materials.7–10 However, until now, the highest ferro-
magnetic transition temperature �Tc� obtained from III-V
DMS thin films has been 172 K;11 thus, various studies con-
cerned with increasing the Tc of DMS materials have made
extensive efforts with the goal of obtaining spintronic de-
vices operating at room temperature. Among the various
kinds of DMS materials with a room temperature Tc,
�Ga1−xMnx�N DMSs have become particularly interesting be-
cause they are theoretically expected to have high values for
Tc.

12 Some works concerning the growth and characteriza-
tion of �Ga1−xMnx�N DMSs with a very high Tc have been
performed.13–18 Recently, some works on the formation of
�Ga1−xMnx�N nanowires have been reported,19,20 but system-
atic studies concerning the microstructural properties and
atomic arrangements of the �Ga1−xMnx�N nanorods grown on
Al2O3 �0001� substrates have not yet been performed. Be-
cause the microstructural properties and atomic arrangements
of the �Ga1−xMnx�N nanorods significantly affect the electri-
cal, magnetic, and optical properties of the nanorods that
are necessary to fabricate high-efficiency devices, studies of
the microstructural properties and atomic arrangements of
�Ga1−xMnx�N nanorods are very important for spintronic de-
vices based on such properties.

This letter reports data regarding the microstructural
properties and atomic arrangements of �Ga1−xMnx�N nano-
rods grown on Al2O3 �0001� substrates by using molecular
beam epitaxy �MBE�. x-ray diffraction �XRD�, transmission
electron microscopy �TEM�, selected area diffraction pattern
�SADP�, and high-resolution TEM �HRTEM� measurements
were carried out to characterize the microstructural proper-
ties of the �Ga1−xMnx�N nanorods grown on Al2O3 �0001�

substrates. Energy dispersive spectroscopy �EDS� measure-
ments were performed to determine the composition of the
�Ga1−xMnx�N nanorods. Atomic arrangements for the
�Ga1−xMnx�N nanorods grown on Al2O3 �0001� substrates
are described on the basis of the XRD, the TEM, the SADP,
and the HRTEM results.

The �Ga1−xMnx�N nanorods used in this study were
grown on Al2O3 �0001� substrates by using a rf-associated
MBE system. The deposition of the �Ga1−xMnx�N nanorods
was done at a substrate temperature of 600 °C. The XRD
measurements were performed by using a D/MAX-RC
�12 kW� diffractometer with Cu K� radiation. The TEM
measurements were performed by using JEOL JEM 2000EX
and JEOL JEM 3010 microscopes operating at 200 and
300 kV, respectively. The samples for the cross-sectional
TEM measurements were prepared by cutting and polishing
with diamond paper to a thickness of approximately 20 �m
and then argon-ion milling at liquid-nitrogen temperature to
electron transparency.

Figure 1 shows the XRD for the �Ga1−xMnx�N nanorods
grown on Al2O3 �0001� substrates. The dominant �0002� K�
diffraction peak corresponding to the �Ga1−xMnx�N nanorods
together with the �0006� K� diffraction peak corresponding
to the Al2O3 substrate are clearly observed in Fig. 1. The

a�Author to whom correspondence should be addressed. Electronic mail:
twk@hanyang.ac.kr.

FIG. 1. X-ray diffraction curve of the �Ga1−xMnx�N nanorods grown on
Al2O3 �0001� substrates, which is plotted in a logarithm scale.
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XRD pattern for the �Ga1−xMnx�N nanorods grown on Al2O3

�0001� substrates indicates that the �Ga1−xMnx�N nanorods
have a wurzite structure with a strong c-axis orientation,
the orientation which gives the lowest surface free energy.21

Because the low-index surface of the �0001� plane in the
�Ga1−xMnx�N nanorods has the largest energy,22 the
�Ga1−xMnx�N nanorods have a c-axis preferential orientation
in the �0001� direction. Several peaks at 32°, 37°, 48°, 57°,
64°, and 73° with a small intensity are observed in the
XRD pattern shown in Fig. 1. The subordinate peaks at
around 32°, 37°, 48°, 57°, 64°, and 73° might be attributed to

the �101̄0�, �101̄1�, �101̄2�, �112̄0�, �101̄3�, and �0004�
�Ga1−xMnx�N planes, respectively. Most nucleation sites at
an initial stage were formed to �0001� preferential orienta-
tions; exceedingly small nucleation sites with a different

orientation, such as �101̄1� planes, are formed at the initial
formation stage of the �Ga1−xMnx�N nanorods, which is
clarified by HRTEM images of the �Ga1−xMnx�N
nanorod /Al2O3 �0001� substrate interface region with a dif-
ferent orientation. Because the low-index surface of the
�0001� plane in the �Ga1−xMnx�N nanorods has the largest
energy, these nuclei with a different orientation gradually
disappear, resulting in the formation of the �Ga1−xMnx�N na-
norods that have a c-axis preferential orientation in the
�0001� direction.

Figure 2 shows a bright-field TEM image of
�Ga1−xMnx�N nanorods grown on an Al2O3 �0001� substrate.
The widths of the �Ga1−xMnx�N nanorod are approximately
10–20 nm, and their heights are about 50–60 nm, as shown
in Fig. 2. After the �Ga1−xMnx�N thin films with thicknesses
between 10 and 20 nm are two-dimensionally grown on
Al2O3 �0001� substrates during the initial growth stage,
�Ga1−xMnx�N nanorods are one-dimensionally grown on
�Ga1−xMnx�N thin films. Because the growth temperature
�600 °C� of the �Ga1−xMnx�N nanorods grown by Al2O3

�0001� substrates by using MBE is much lower than
the temperature �about 800 °C� of the �Ga1−xMnx�N
thin films grown on Al2O3 �0001� substrates by using
MBE, the �Ga1−xMnx�N nanorods with an one-dimensional
structure can be formed. The formation of �Ga1−xMnx�N
nanorods is attributed to an significant increase in the
compressive strain of the �Ga1−xMnx�N layer at an
initial growth stage resulting from the low thermal
energy due to the low temperature growth. The inset
of Fig. 2 shows a SADP from the �Ga1−xMnx�N nanorods

grown on an Al2O3 �0001� substrate. The orientation
relationships between the Al2O3 �0001� substrates and the
�Ga1−xMnx�N nanorods are �0001�Al2O3

� �0001��Ga1−xMnx�N and

�11̄00�Al2O3
� �21̄1̄0��Ga1−xMnx�N. The large lattice mismatch be-

tween the �Ga1−xMnx�N nanorods and the Al2O3 �0001� sub-
strates �about 16%� induces a large compressive stress at the
heterointerface region. The streaks in the SADP correspond-
ing to the �Ga1−xMnx�N nanorods indicate that �Ga1−xMnx�N
nanorods grown on Al2O3 substrates have a slightly tilted
c-axis orientation. The measured lattice constants of the a
and the c axes for the �Ga1−xMnx�N nanorods are slightly
decreased but are little different from those of the bulk GaN
materials. Because the Mn ions for the Mn-implanted GaN
materials are located at or near the Ga site,23 the decrease in
the lattice constant of the �Ga1−xMnx�N nanorod originates
from the substitution of Mn atoms into Ga sites.

In the EDS measurements, the atomic distribution of the
Mn atoms was uniform throughout the �Ga1−xMnx�N nano-
rods. The EDS spectrum of the nanorod-tip regions demon-
strates that the stoichiometry of the nanorods is �Ga1−xMnx�N
and that the ratio between the Ga and the Mn compositions is
95:5.

Figure 3 shows a HRTEM image of �a� the �Ga1−xMnx�N
nanorods /Al2O3 �0001� substrate heterointerfaces and �b� the
tip region of the �Ga1−xMnx�N nanorods. The HRTEM image
shows that the �Ga1−xMnx�N was two-dimensionally grown
near the interfacial region during the initial growth stage, as
shown in Fig. 3�a�. One-dimensional �Ga1−xMnx�N nanorods
were roughly formed on two-dimensional thin films with a
thickness of 10 nm. Figures 3�a� and 3�b� indicate that the
growth direction of the �Ga1−xMnx�N nanorods was parallel
to the �0001� direction. This result is in reasonable agreement
with the XRD and the SADP results. �Ga1−xMnx�N nanorods
do not contain defects except for stacking faults. Although
the space between the �Ga1−xMnx�N nanorods is shown to be
filled with some materials, the space is certainly vacuum,
which is clarified from the top-view SEM image of the
samples. Electron beams in the TEM are transmitted to the
parallel to the Al2O3 �0001� substrate. Several nanorods can
be existed in the pass of the electron beam because of the
�Ga1−xMnx�N nanorods with a diameter of about 20 nm and
of the TEM sample with a thickness of approximately
100 nm. Out of focused �Ga1−xMnx�N nanorods or epoxy
used to prepare the TEM sample might be shown to be dif-
ferent materials in HRTEM image.

Figure 4�a� shows the magnified HRTEM image
of the �Ga1−xMnx�N /Al2O3 heterointerface region. The
HRTEM image shows that the orientation relationships

FIG. 2. Bright-field transmission electron microscopy image of the
�Ga1−xMnx�N nanorods grown on the Al2O3 �0001� substrates. The inset

indicates a selected area electron diffraction pattern, taken along the �21̄1̄0�
zone axis of the �Ga1−xMnx�N nanorods.

FIG. 3. High-resolution transmission electron microscopy images of �a� the
�Ga1−xMnx�N nanorod /Al2O3 �0001� substrate heterointerface region and �b�
the tip region of the nanorods.
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between the Al2O3 substrates and the �Ga1−xMnx�N
nanorods are �0001�Al2O3

� �0001��Ga1−xMnx�N and

�11̄00�Al2O3
� �21̄1̄0��Ga1−xMnx�N. The lattice mismatch between

the Al2O3 �0001� substrate and the �Ga1−xMnx�N layer is
approximately 16%. Because the lattice constant of the
�Ga1−xMnx�N nanorods is larger than that of the Al2O3

�0001� substrate, a large compressive stress is induced to
the �Ga1−xMnx�N thin film region. Even though the
�Ga1−xMnx�N thin film near the heterointerface is strained to
coherently grow to the substrate, the misfit dislocations are
created due to large lattice mismatch. The arrows in Fig. 4�a�
indicate the extra half planes at a heterointerface. Misfit dis-
locations were regularly created, as shown in Fig. 4�a� and
atomic arrangements of the �Ga1−xMnx�N nanorods grown on
the Al2O3 �0001� substrate are shown in Fig. 4�b�. The regu-
lar misfit dislocations, indicated by the arrows in Fig. 4�b�,
are formed due to the lattice mismatch between the Al2O3
�0001� substrate and the �Ga1−xMnx�N layer.

In summary, �Ga1−xMnx�N nanorods were grown on
Al2O3 �0001� substrates by using MBE. The XRD and the
bright-field TEM results showed that the �Ga1−xMnx�N nano-
rods grown on Al2O3 �0001� substrates had uniform mor-
phologies with a c-axis preferential orientation in the �0001�
crystal direction. The XRD and SADP results showed that

the lattice constant of the �Ga1−xMnx�N nanorods was
slightly decreased compared to that of the GaN bulks, indica-
tive of the substitution of Mn atoms into Ga sites. The HR-
TEM images showed that the �Ga1−xMnx�N nanorods did not
contain defects except for stacking faults. Atomic arrange-
ments for the �Ga1−xMnx�N nanorods grown on a Al2O3

�0001� substrate are described on the basis of the XRD, the
TEM, and the HRTEM results.
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Al2O3 �0001� substrate.
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