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Abstract—In this paper, we address the cell averaging (CA),
greatest of (GO), and smallest of (SO) constant false-alarm rate
(CFAR) processors for code acquisition in a homogeneous and a
nonhomogeneous environment. The performance characteristics
of the CA, GO, and SO processors are analyzed and compared
when receiving antenna diversity is employed in the pseudonoise
code acquisition of direct-sequence code-division multiple-access
systems. From the simulation results, it is observed that the GO
CFAR scheme has the best performance in a nonhomogeneous
environment and has almost the same performance as the CA
CFAR scheme in a homogeneous environment.

Index Terms—Code acquisition, constant false-alarm rate
(CFAR) processor, homogeneous environment, nonhomogeneous
environment, receive diversity, signal detection.

I. INTRODUCTION

AMONG VARIOUS types of detectors, an attractive class
that can be used under varying channel conditions is

the class of constant false-alarm rate (CFAR) [1] processing
schemes, which has been used predominantly in radar systems.
The threshold in a CFAR detector is determined on a cell-
by-cell basis using the noise power estimated by processing a
group of surrounding reference cells.

In the past decades, the CFAR processors have been applied
to code-acquisition problems for estimating the noise variance
in one-antenna direct-sequence code-division multiple-access
(DS/CDMA) systems [1]–[3]. It has been shown that one-
antenna DS/CDMA systems with a cell averaging (CA) CFAR
processor exhibit excellent performance in a homogeneous en-
vironment, where the power of interference noise varies slowly
as time changes. On the other hand, in a nonhomogeneous
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environment, where the variance of interference noise varies
rapidly as the occasion demands, the one-antenna DS/CDMA
systems with a greatest of (GO) CFAR processor is shown [3]
to have the best performance. Practically, when the number of
users changes abruptly or deep fading and shadowing occur, an
abrupt change of the noise variance is observed. A base station
affected by the users on a high-speed train is one such example.

In the meantime, the use of multiple antennas in DS/CDMA
systems has been widely recognized as a useful means to
enhance the signal-to-noise ratio (SNR) and increase the ca-
pacity of wireless systems [4]–[10]. Several different types
of systems using multiple antennas have been proposed to
exploit the attractive features of multiple antennas [4], [7],
[9], [10]. A number of spatial processing techniques have also
been developed, and their performance has been analyzed [5],
[6], [8]. Nonetheless, the performance improvement of initial
synchronization (code acquisition and tracking) using multiple
antennas has rarely been considered.

In the study in [10], an adaptive hybrid code-acquisition
scheme with the CA CFAR algorithm and antenna diversity has
been considered in a homogeneous environment but not in a
nonhomogeneous environment. It is well known [1] that the
performance of the CA CFAR processor deteriorates consid-
erably when the assumption of homogeneous environment is
violated. To overcome such a deterioration of the performance
resulting from a nonhomogeneous environment, modifications
of the CA CFAR schemes can be considered at the cost of
slightly additional hardware complexity.

In this paper, we address hybrid code acquisition with multi-
ple antennas incorporating both the modified CA CFAR proces-
sors and receive antenna diversity in the acquisition of the
pseudonoise (PN) code for DS/CDMA systems. Specifically,
not only the GO and smallest of (SO) detectors are analyzed in
a homogeneous environment, but the GO, SO, and CA detectors
are also taken into account in a nonhomogeneous environment.
The contribution and novelty of this paper lies in that we
have analytically obtained and compared the performance of
the modified CA CFAR schemes in a scenario where the
following three elements are taken into account simultaneously:
1) CA, GO, and SO CFAR schemes, 2) receive diversity, and
3) homogeneous and nonhomogeneous environment. As far as
we perceive, such an attempt has not yet been reported in other
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Fig. 1. Hybrid code-acquisition system with multiple antennas.

Fig. 2. lth bank of parallel correlators in Fig. 1.

published work, although subsets of the three elements have
previously been considered partially in several investigations of
acquisition problems. Particularly, this paper is distinguishable
from the study in [10] in that this paper discusses the acquisition
problem with the CA, GO, and SO CFAR schemes in a nonho-
mogeneous environment as well as in a homogeneous environ-
ment, while Oh et al. [10] considers the problem with the CA
CFAR processor, assuming only a homogeneous environment.

The organization of this paper is as follows. In Section II, a
description of the system model is presented. The performance
characteristics of several acquisition systems are analyzed in
Section III, and simulation results are provided in Section IV.
Finally, Section V concludes this paper.

II. SYSTEM MODEL

Fig. 1 shows the hybrid acquisition system with L antenna
elements. Each antenna element is followed by a bank of M
correlators in a parallel structure, as shown in Fig. 2. The dis-
tance between the adjacent antenna elements is assumed to be
sufficiently large (about ten times the carrier wavelength λ [8]).
As a result, signals received at different antennas experience
independent fading, which would eventually allow the multiple-
antenna system to have a higher SNR (and, consequently, a
higher probability to acquire the PN sequence correctly) than
the single-antenna systems.

Fig. 3. mth correlator in Fig. 2.

Strictly speaking, the signals received at different antennas
will have different propagation delays because they traverse
different paths. Nonetheless, the effect on the performance
of the acquisition system induced by this delay difference is
negligible if the separation distance d is much smaller than
c/B, where c is the speed of light, and B is the bandwidth
of the transmitted signal. This condition is easily satisfied in
many wireless systems. For example, in the case of IS-95
for which B ≈ 1.25 MHz, supposing d = 10λ and the carrier
frequency is 900 MHz, we have 3.3 m = d� c/B = 240 m.
The propagation delay difference between two received signals
is, thus, less than 0.014 chip. In other words, the time required
for the received signal associated with a given transmission path
to propagate across the antenna array is typically much smaller
than the inverse of the bandwidth of the transmitted signal. It is
consequently reasonable to assume that the signals received at
different antennas have the same timing delay.

The whole uncertainty region of length (the code length) Lc
is divided into M subregions of equal length Lp = �Lc/M�,
where �x� denotes the smallest integer greater than or equal
to x. In any bank of M parallel correlators, the mth correlator
serially searches all the cells in the mth subregion, as shown
in Fig. 3. In Fig. 3, N is the length of a correlator (the
partial correlation length), j = 0, 1, . . . , Lp/∆ − 1, Tc is the
chip duration, and ∆ is the advancing step size. The value of ∆
is normally chosen to be 1 or 1/2, meaning that the local timing
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Fig. 4. Structure of the decision processor in Fig. 1.

is updated at intervals of Tc or Tc/2, respectively. In this paper,
∆ is set to one, which is the usual practice with no fractional
chip timing uncertainty in the system. The outputs of the mth
correlators of the L banks are summed to produce

Um =
L∑
l=1

Xl,m, m = 1, 2, . . . ,M (1)

and then used as the inputs to the decision processor.
Fig. 4 shows a block diagram of the decision processor in

Fig. 1. The threshold TZm of the mth branch is the product
of the CFAR output Zm and the scale parameter T determined
to attain the false-alarm rate PFA. Here, the CFAR output Zm
is obtained by one of the three CFAR processors based on the
“upper” reference branch output Ym,1 and “lower” reference
branch output Ym,2, where

Ym,1 =

M+1
2∑

j=1,
j �=m

Uj

Ym,2 =
M∑

j= M+1
2 +1

Uj form ≤ M + 1
2

(2)

and

Ym,1 =

M+1
2 −1∑
j=1

Uj

Ym,2 =
M∑

j= M+1
2 ,

j �=m

Uj form >
M + 1

2
. (3)

Although we have assumed that M is an odd number in (2)
and (3), it can be any positive integer in principle: When

M is an even number, we need to modify (2) and (3) only
slightly.

The essence of the CFAR scheme lies in the use and process-
ing of a group of reference signals when we estimate the noise
power for a cell under test. In conventional serial acquisition
systems with one antenna [2], [3], in which the correlator
outputs are sent serially (timewise) into a shift register, the
reference signals are split into “leading” and “lagging” parts
symmetrically around the cell under test. In the hybrid acqui-
sition systems considered in this paper, on the other hand, it
is more adequate to estimate the noise power by processing
reference signals split into “upper” and “lower” parts (i.e.,
the reference signals are formed and used spacewise and not
timewise), since a set of correlation values are obtained at every
processing time of the correlators.

In the decision logic of Fig. 4, if only one of {Um}Mm=1

exceeds the threshold, the code is acquired; otherwise, the
phases of the local PN generators are advanced by ∆Tc, and
the acquisition process is repeated.

Now, let the hypothesis H1 denote the case under which the
phases of the incoming and local PN signals are aligned to
within ∆Tc, and the hypothesisH0 denote the case under which
the phase difference between the incoming and local PN signals
is greater than or equal to the duration of one chip. Then, we can
regard the PN code-acquisition process as a binary hypothesis-
testing problem. Note that, in CFAR algorithms, all reference
signals {Uj}Mj=1,j 	=m are assumed to be underH0 when the test
signal is Um.

III. ANALYSIS OF DECISION PROCESSORS

In this section, the performance of the CA, GO, and SO
CFAR processors is analyzed in homogeneous and nonho-
mogeneous backgrounds, obtaining closed-form performance
expressions. The derivations of the detection, missed detection,
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and false-alarm probabilities in this section are based on the
following assumptions.

1) There is only one sample corresponding to the correct
phase (H1 cell).

2) The correlator outputs are independent.
3) The length N of a correlator is large enough so that the

correlation of the received and local codes yield zero
when they are not in phase (H0 cells).

4) The effect of random data is negligible.

The detection probability PD is the probability that the
output value of the correct branch (H1 branch) in Fig. 4 exceeds
the threshold and that the output values of all the other branches
(H0 branches) are not larger than the threshold. In other words,
we have

PD=
1
M

M∑
j=1


P (Uj > TZj |H1)

M∏
m=1,
m �=j

P (Um < TZm|H0)


 .
(4)

It is easy to see that the false-alarm probability can be
written as

PFA =
1
Lp
PFA|H1 +

Lp − 1
Lp

PFA|H0 (5)

where

PFA|H1 =
1
M

M∑
j=1

[
P (Uj > TZj |H0)

×
M∑

k=1,
k �=j

{
P (Uk < TZk|H1)

·
M∏

m=1,
m �=j,m �=k

P (Um < TZm|H0)

}]

(6)

is the probability that the H1 signal Uk is less than the thresh-
old, exactly one of {Um}Mm=1,m 	=k exceeds the threshold when
H1 is true, and

PFA|H0 =
1
M

M∑
j=1

{
P (Uj > TZj |H0)

M∏
m=1,
m �=j

P (Um< TZm|H0)

}

(7)

is the probability that only one of {Um}Mm=1 exceeds the
threshold value whenH0 is true. Note that PFA|H1 can be called
the probability of error. Using (4) and (6), the missed detection
probability can be evaluated as

PM = 1 − PD − PFA|H1 . (8)

It is noteworthy that PD, PFA|H1 , PFA|H0 , and PM can be easily
evaluated once P (Um > TZm|H1) is obtained since

P (Um > TZm|H0) =P (Um > TZm|H1) |signal strength=0

(9)

P (Um < TZm|H1) = 1 − P (Um > TZm|H1) (10)

and

P (Um < TZm|H0) = 1 − P (Um > TZm|H0) . (11)

Now, let us try to take the nonhomogeneous environment
into account when multiple antennas are available. First, let
{ϕi}Pi=1 be a set of P integers such that

∑P
i=1 ϕi = L and

1 ≤ ϕi ≤ L, where 1 ≤ P ≤ L. Then, assume the values of the
noise variance at the L antennas are such that ϕ1 values are
the same, ϕ2 values are the same, . . ., ϕP values are the same.
This formulation allows us to accommodate all possibilities
of the noise variance in a nonhomogeneous environment, e.g.,
{all ϕi = 1} corresponds to the case where the L noise vari-
ances are all distinct. Clearly, the homogeneous environment
can be considered as a special case of the nonhomogeneous
environment with P = 1 and ϕ1 = L.

Assuming the reception of flat Rayleigh faded-signals in
additive white Gaussian noise (AWGN), the output Xl,m of
the square-sum unit in Fig. 3 has the exponential probability
density function

pXl,m
(x) = βle

−βlx, x ≥ 0, l = 1, 2, . . . , L. (12)

It is well known [11] that we have the null hypothesis

H0 : βl =
1

µ0(1 + Cl)
(13)

and alternative hypothesis

H1 : βl =
1

µ0(1 + Cl)(1 + Sl)
(14)

with µ0 as the variance of AWGN, Cl as the interference-to-
AWGN ratio, and Sl as the signal-to-interference-and-noise
ratio (SINR) of the output Xl,m.

Now, since the moment generating function (mgf) of the
random variable Xl,m in Fig. 1 is

MXl,m
(t) =

βl
βl + t

(15)

Um =
∑L
l=1Xl,m, and the random variables {Xl,m}Ll=1 are

independent, the mgf of Um can be obtained as

MUm
(t) =

P∏
i=1

(
βi

βi + t

)ϕi

. (16)

Using the partial fraction expansion and inverse Laplace trans-
form, the pdf of Um can be expressed as

pUm
(u) =

P∑
i=1

ϕi∑
j=1

Ri,j
(j − 1)!

uj−1e−βiu (17)

from (16), where Ri,j is defined in (27) of the Appendix. Once
the pdf pUm

(u) is obtained from (17), the probabilities PD and
PFA can be evaluated from (4) and (5) using (9)–(11).
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IV. PERFORMANCE EVALUATION

In this section, we evaluate and compare the performance
of the CA, GO, and SO CFAR processors when multiple an-
tennas are available in a homogeneous and a nonhomogeneous
environment. Note that an adaptive hybrid acquisition scheme
with the CA CFAR algorithm and antenna diversity has been
studied in [10] for the homogeneous environment but not in a
nonhomogeneous environment.

A. Performance Measure and Conditions

To evaluate and compare the performance of various hybrid
acquisition schemes, we obtain the mean acquisition time

E{Tacq} =
NTc
2PD

· [2 + (1 +KPFA|H0)(Lp − 1).

· {2(PM+PFA|H1)+PD}+2KPFA|H1 ] (18)

of the hybrid acquisition system, which can be derived using the
signal-flow technique [12], [13]. In evaluating the performance,
we set the chip duration Tc = 1 µs, code-sequence length Lc =
2047 chips, advancing step size ∆ = 1, penalty time factor
K = 104, and desired false-alarm probability PFA = 10−3.

We assume that the total noise is composed of AWGN with
variance N0/2 and multiple-access interference (MAI). The
Gaussian assumption for the total noise is based on the fact
that the number of MAI sources increases in proportion to the
number of antennas, and thus, the Gaussian assumption can
be more easily justified in the multiple-antenna environment
than in the single-antenna environment: Note that the Gaussian
assumption is widely accepted to be reasonable, even in the
single-antenna environment [11].

Then, we have

µ0 =NN0 (19)

Cl =
1
3

Kl∑
i=1

Ei

/
N0

2

=
1
3
KlE0

/
N0

2

=
Kl · (SNR/chip)

3
(20)

and

Sl =
2σ2NE0R

2(τ)

N0 + 2
3

Kl∑
i=1

Ei

=
2σ2NE0

N0 + 2
3KlE0

=
σ2N · (SNR/chip)

1 + Kl

3 · (SNR/chip)
(21)

Fig. 5. Detection probability in additive Gaussian homogeneous environment
with Rayleigh fading (L = 2, M = 9, N = 256, and Ku = 0).

from the study in [11]. In (20) and (21), Kl is the number of
interfering users whose signals compose the MAI at the lth
receiving antenna, Ei is the chip energy of the ith interfering
user, E0 is the chip energy of the desired user, σ > 0 is the
parameter of Rayleigh pdf p(α) = (2α/σ2)e−α

2/σ2

R(τ) =
{

1 − τ
Tc
, if |τ | < Tc

0, if |τ | ≥ Tc
(22)

is the autocorrelation function of the PN sequence, τ is the
timing error defined as the time difference between the incom-
ing spreading and local despreading PN code sequences of the
desired user, and SNR/chip = (E0/(N0/2)) is the chip SNR.
We have assumed Ei = E0 for all i, and there is no residual
code phase offset so that R(τ) = 1 in (20) and (21). From (21),
it is clear that the SINR Sl has the limiting value 3σ2N/Kl
when the SNR per chip tends to infinity.

B. Simulation Results and Discussion

In the simulation results of this paper, we employ the chip
SNR instead of SINR as the measure of the signal strength. The
number of Monte Carlo runs for each point in the figures shown
here is 106, and the dashed, solid, and dotted lines are used to
denote the performance of the CA, GO, and SO CFAR schemes,
respectively.

1) Performance in Homogeneous Environment: In the ho-
mogeneous environment, {Kl}Ll=1 are all equal to a value
denoted as Ku, and the conventional scheme indicates a serial
acquisition scheme with L = 1 using a CFAR processor or a
hybrid acquisition scheme with L ≥ 1 using the CA CFAR
processor.

Figs. 5 and 6 show the detection and missed detection
probabilities, respectively, when the number of antennas is 2
(L = 2), the number of correlators is 9 (M = 9), the partial
correlation length is 256 (N = 256), and the number of inter-
fering users is 0 (Ku = 0). Clearly, the CA CFAR processor has
the best performance, confirming that it is the optimum CFAR
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Fig. 6. Missed detection probability in an additive Gaussian homogeneous
environment with Rayleigh fading (L = 2, M = 9, N = 256, and Ku = 0).

processor in a homogeneous environment. The GO CFAR
processor performs better than the SO CFAR processor and has
almost the same performance as the CA CFAR processor. Note
that the GO and SO CFAR processors estimate the noise power
by the greatest and smallest, respectively, of the sums in the
upper and lower parts, while the CA CFAR processor estimates
the noise power by using the sum of all reference signals. Thus,
the noise power in the modified CFAR schemes is estimated
less efficiently in a homogeneous environment, and therefore,
some loss of detection is introduced compared with the CA
CFAR processor. In these figures, close agreements between
the analysis and simulation results can clearly be observed,
implying that (at least partially) the proposed analytical model
is reasonably justifiable. This observation, we think, forms a
justification that we may obtain the mean acquisition time
from (18) with the probabilities PD, Pm, PFA|H1 , and PFA|H0

obtained from simulations.
Fig. 7 shows the mean code-acquisition time for various

values of the partial correlation length N when L = 2,M = 9,
and Ku = 0. We can observe that the mean acquisition time is
shorter when the partial correlation length is larger (smaller)
if the SNR/chip is lower (higher) than −13 dB because the
detection probability converges to one, regardless of the partial
correlation length when the SNR per chip is sufficiently high,
making the mean acquisition time increase in proportion to the
partial correlation length, as shown in (18). For the results with
other values of L, M , and Ku (not shown here due to space
restrictions), we can also make the same observations.

Fig. 8 shows the mean acquisition time of various acquisition
schemes when N = 256 and Ku = 0, where the structures of
the conventional one-antenna serial acquisition systems with
CFAR schemes are adopted from the study in [3]. It should be
noted that the mean acquisition times for the serial acquisition
schemes are obtained by a formula [12] similar to (18). It is
observed that the hybrid acquisition schemes outperform the
serial acquisition schemes at all values of the SNR per chip, and
the conventional hybrid scheme with the CA CFAR processor
is superior to the other schemes. As is easily anticipated, the

Fig. 7. Mean acquisition time for various values of N in an additive Gaussian
homogeneous environment with Rayleigh fading (L = 2, M = 9, and
Ku = 0).

Fig. 8. Mean acquisition time comparison among various schemes in an
additive Gaussian homogeneous environment with Rayleigh fading (N = 256
and Ku = 0).

performance gap between the hybrid and serial acquisition
schemes becomes larger as the number of antenna increases.

2) Performance in Nonhomogeneous Environment: Unlike
in the homogeneous environment, the conventional schemes in
a nonhomogeneous environment are serial acquisition schemes
with L = 1 using CFAR processors. First, we design the CFAR
schemes assuming Ku = 32, and then, the performance of
the hybrid schemes is evaluated when K1 = 2 and K2 = 62.
Here, we use Ku = 32 as the maximum number of interfering
users, since a base station in the commercial CDMA can
accommodate up to 32 multiple-access users to maintain the
required quality of service [14]. Note that, for both {Ku =
32 in homogeneous environment} and {K1 = 2 and K2 =
62 in nonhomogeneous environment}, the number of interfer-
ing users at a test cell equals to 64. The results in Fig. 9 show
the mean acquisition time when L = 2, M = 9, and N = 256.
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Fig. 9. Mean acquisition time in an additive Gaussian nonhomogeneous
environment with Rayleigh fading (L = 2, M = 9, N = 256, K1 = 2, and
K2 = 62).

Fig. 10. PDF of Um under H0 in a homogeneous and a nonhomogeneous
environment when L = 2 and N = 256.

It is observed that, in a nonhomogeneous environment, the GO
CFAR processor outperforms the other processors, and the CA
CFAR processor performs slightly better than the SO CFAR
processor. This phenomenon can be explained as follows. First,
the pdf of Um under H1 not only changes barely when the
environment changes but also influences little the variation of
the mean acquisition time since most of the uncertainty phase
corresponds to H0. Second, the pdf of Um under H0 in a
nonhomogeneous environment becomes more impulsive [15]
than that in a homogeneous environment, as shown in Fig. 10,
as an example when L = 2 and N = 256. Thus, the GO CFAR
processor which estimates the noise power by the GO the sums
in the upper and lower windows would perform best, while the
noise estimates of the CA and SO CFAR processors exploits the
impulsive nature less effectively.

Next, we examine the influence of the number of interfering
users on the performance. Fig. 11 shows the mean acquisition
time for various values of the number of interfering users
when L = 2, M = 9, and N = 256. We can observe that the

Fig. 11. Mean acquisition time for various values of the number of interfering
users in an additive Gaussian nonhomogeneous environment with Rayleigh
fading (L = 2, M = 9, and N = 256).

Fig. 12. Mean acquisition time for various values of N and M in an
additive Gaussian nonhomogeneous environment with Rayleigh fading (L = 2,
K1 = 0, and K2 = 64).

mean acquisition time becomes longer when the number of
interfering users is more biased to one antenna. In addition, the
performance gap between the GO and CA CFAR processors
is negligible when K1 = 31 and K2 = 33, but it is noticeable
whenK1 = 0 andK2 = 64. Fig. 12 shows the mean acquisition
time for various values of the partial correlation length N and
the number M of correlators when L = 2, K1 = 0, and K2 =
64. It is observed that the performance of the CFAR processors
becomes better asN orM increases. Unlike in a homogeneous
environment (Fig. 7), a larger value of N results in better
acquisition performance, regardless of the SNR per chip since
there always exists MAI in a nonhomogeneous environment.
This is because, in the presence of the MAI, a longer correlation
length is necessary to ensure a sufficiently high SNR of the
decision variables. It is also observed that the performance is
saturated whenM > 21. This can be explained as follows. With
the hybrid search, a decision is made based on M variables
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Fig. 13. Mean acquisition time for various values of L in an additive Gaussian
nonhomogeneous environment with Rayleigh fading (M = 21 and N = 256).

Fig. 14. Comparison of the mean acquisition time among various schemes
when the number of interfering users increases from 0 to 32 abruptly in
an additive Gaussian nonhomogeneous environment with Rayleigh fading
(N = 256).

{Um}Mm=1. Among the M variables, only one corresponds to
the correct PN code phase (H1 state). Therefore, when M
becomes larger, the decision variables corresponding to an H0

state increase the possibility for a false-alarm event to occur.
Fig. 13 shows the mean acquisition time for various values

of the number L of antennas when M = 21 and N = 256.
Clearly, the CFAR processors performs better as the value
of L increases. An additional antenna clearly implies better
performance. Yet, when the number of antennas is above four,
only a mediocre improvement of performance can be achieved.
The reason is that much of the diversity gain has already been
achieved by using four receive antennas. In addition, hardware
costs and system-design constraints would limit the value of L
in practice.

Finally, Fig. 14 shows the mean acquisition time of various
acquisition schemes whenN = 256 and the number of interfer-
ing users increases from 0 to 32 abruptly. As in a homogeneous

environment, we can observe that the hybrid schemes have
better performance than the serial schemes, regardless of the
value of SNR per chip.

3) Some Discussions: It is anticipated that the relative per-
formance of the GO, SO, and CA processors would be the same
whether there exists frequency-selective fading or not, although
the absolute performance of the GO, SO, and CA processors
will be different for frequency-selective fading channels (from
those for frequency-nonselective fading channels). This can be
confirmed in other studies such as [16] and [17].

We would also like to add that, if we consider multiple H1

cells, the absolute performance of the CFAR processors will be
better than that we have obtained and shown in this paper. Yet,
the relative performance among the GO, SO, and CA schemes
is expected to be the same as in the singleH1 cell environment.

V. CONCLUSION

In this paper, adaptive hybrid acquisition schemes with
mean-level CFAR processors and antenna diversity have been
addressed for PN code acquisition in the presence of MAI under
homogeneous and nonhomogeneous circumstances. Since the
performance of the CA CFAR processor is known to deteri-
orate significantly in nonhomogeneous environment, the GO
and SO CFAR processors have been applied to alleviate the
performance degradation at the cost of negligible hardware
complexity.

The performance of the CA, GO, and SO CFAR processors
has been analyzed by obtaining the closed-form expressions
and compared in a homogeneous and a nonhomogeneous
environment with simulation results. Numerical results have
indicated that the GO CFAR scheme has the best performance
in a nonhomogeneous environment and has almost the same
performance as the CA CFAR scheme in a homogeneous
environment.

The acquisition schemes considered in this paper are
applicable to the single-input–single-output, single-input–
multiple-output, multiple-input–single-output (MISO), and
multiple-input–multiple-output (MIMO) channels. For the
MISO and MIMO channels, we might be able to gain further
performance improvement if we, in addition, take transmit
diversity into account. For example, if we use several codes for
each user to exploit transmit diversity (which seems to be the
only plausible way to attain the transmit diversity), we may end
up with so many expressions similar to (38) and an increase in
the number of the banks of parallel correlators in Fig. 1. We
have left the issue of transmit diversity as a topic for further
study.

APPENDIX

DETECTION AND FALSE ALARM PROBABILITIES

OF THE CFAR SCHEMES

To find the inverse Laplace transform, let us express the mgf
(16) of Um in terms of the partial fraction expansion as

MUm
(t) =

P∑
i=1

ϕP∑
j=1

Ri,j
(βi + t)j

. (23)
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In (23), Ri,j , i = 1, 2, . . . , P , j = 1, 2, . . . , ϕi can be com-
puted as

Ri,j =
1

(ϕi − j)!
dϕi−j

dtϕi−j {(βi + t)ϕiMUm
(t)}

∣∣
t=−βi

=

P∏
k=1

βϕk

k

(ϕi − j)!
dϕi−j

dtϕi−j

×


 ϕ1∑
l1=0

· · ·
ϕi−1∑
li−1=0

ϕi+1∑
li+1=0

· · ·
ϕP∑
lP =0




P∏
k=1,
k �=i

(
ϕk
lk

)
βϕk−lk
k




× t
∑P

k=1,k �=i
lk



−1∣∣∣∣∣∣∣

t=−βi

. (24)

Now, note that [18]

dj

dtj
F (ζ(t)) =

∑
{η}1

j!
η1!η2!, . . . , ηn!

dqF (y)
dyq

×
(
y(1)

1!

)η1 (
y(2)

2!

)η2
, . . . ,

(
y(n)

n!

)ηn

(25)

where y = ζ(t) and the symbol
∑

{η}1 represents the sum-
mation over all non-negative integer solutions {ηm} of the
simultaneous equations

∑n
m=1mηm = j and

∑n
m=1 ηm = q.

Now, letting

y =
ϕ1∑
l1=0

· · ·
ϕi−1∑
li−1=0

ϕi+1∑
li+1=0

· · ·
ϕP∑
lP =0




P∏
k=1,
k �=i

(
ϕk
lk

)
βϕk−lk
k


 t

P∑
k=1,
k �=i

lk

(26)

in (24), we can obtain F (y) = 1/y and F (q)(y) =
(−1)q!q/yq+1 easily. Therefore, we have

Ri,j =
∑
{η}2

1
η1!η2!, . . . , ηn!

(−1)qq!
P∏
k=1

βϕk

k

P∏
k=1,
k �=i

(βk−βi)ϕk(q+1)

·
n∏
h=1

(
1
h!

)ηh

×



ϕ1∑
l1=0

· · ·
ϕi−1∑
li−1=0

ϕi+1∑
li+1=0

· · ·
ϕP∑
lP =0




P∏
k=1,
k �=i

(
ϕk
lk

)
βϕk−lk
k




·


 P∑

k=1,
k �=i

lk


!

/


 P∑

k=1,
k �=i

lk


− h


!(−βi)


 P∑

k=1,
k �=i

lk


−h



ηh

(27)

from (24)–(26). Here, the symbol
∑

{η}2 represents the summa-
tion over all non-negative integer solutions {ηm} of the simul-
taneous equations

∑n
m=1mηm = ϕi − j and

∑n
m=1 ηm = q.

Consequently, the pdf of Um is obtained as

pUm
(u) =

P∑
i=1

ϕi∑
j=1

Ri,j
(j − 1)!

uj−1e−βiu (28)

from the inverse Laplace transform of (23). Now, we will
evaluate

P (Uk>TZk|H1)=

∞∫
0

∞∫
Tz

pUk
(u|H1)du · pZk

(z)dz

=
P∑
i=1

ϕi∑
j=1

j−1∑
m=0

Ri,jT
m

m!βj−mi

EZk
{Zkme−βiTZk}

(29)

for each of the three CFAR schemes, where βi is 1/{µ0(1 +
Ci)(1 + Si)} underH1. Here, we have used the subscript Zk in
EZk

to specify that the expectation is over Zk.

A. CA CFAR Decision Processor

The output Zm of the CA processor is given by

Zm =
M∑

j=1,
j �=m

Uj , m = 1, 2, . . . ,M. (30)

Thus, using (16), the mgf of Zm in the CA CFAR scheme is

MZm
(t) = {MUm

(t)}M−1

=
P∏
i=1

(
βi

βi + t

)(M−1)ϕi

. (31)

Comparing (31) with (16), we can obtain the pdf of Zm
directly as

pZm
(z) = pUm

(z)|ϕi→(M−1)ϕi

=
P∑
i=1

(M−1)ϕi∑
j=1

Wi,j

(j − 1)!
zj−1e−βiz (32)

where

Wi,j =
∑
{η}3

1
η1!η2!, . . . , ηn!

×
(−1)qq!

P∏
k=1

β
(M−1)ϕk

k

P∏
k=1,
k �=i

(βk − βi)(M−1)(q+1)ϕk

·
n∏
h=1

(
1
h!

)ηh

×


 (M−1)ϕ1∑

l1=0

· · ·
(M−1)ϕi−1∑
li−1=0

(M−1)ϕi+1∑
li+1=0

· · ·
(M−1)ϕP∑
lP =0
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×




P∏
k=1,
k �=i

(
(M − 1)ϕk

lk

)
β

(M−1)ϕk−lk
k




×


 P∑

k=1,
k �=i

lk


!

/


 P∑

k=1,
k �=i

lk


− h


!

· (−βi)
(∑P

k=1,k �=i
lk
)
−h



ηh

(33)

for i = 1, 2, . . . , P ; j = 1, 2, . . . , (M − 1)ϕi; βi = 1/{µ0(1 +
Ci)}. In (33), the symbol

∑
{η}3 represents the summation over

all non-negative integer solutions {ηm} of the simultaneous
equations

∑n
m=1mηm = (M − 1)ϕi − j and

∑n
m=1 ηm = q.

From (29) and (32), we thus get

P (Uk > TZk|H1) =
P∑
i1=1

ϕi1∑
j1=1

j1−1∑
m=0

P∑
i2=1

(M−1)ϕi2∑
j2=1

(
j2 +m− 1

m

)

× Tm ·Ri1,j1Wi2,j2

(Tβi1 + βi2)
−(j2+m)

βj1−mi1

. (34)

With βi1 = 1/{µ0(1 + Ci1)(1 + Si1)} and βi2 = 1/{µ0(1 +
Ci2)}, (34) can be rewritten as

P (Uk >TZk|H1)=
P∑
i1=1

ϕi1∑
j1=1

j1−1∑
m=0

P∑
i2=1

(M−1)ϕi2∑
j2=1

(
j2 +m− 1

m

)

× Tm · {(1 + Ci1)(1 + Si1)}
j1−m{

T
(1+Ci1 )(1+Si1 ) + 1

(1+Ci2 )

}j2+m
·Ri1,j1(SP ) ·Wi2,j2 · (µ0)j1+j2 (35)

where SP = (S1, S2, . . . , SP ) is the vector of SINR

Ri,j(SP )=
∑
{η}2

P∏
k=1

{
1

(1+Ck)(1+Sk)

}ϕk

η1!η2!, . . . , ηn!

· (−1)qq! · (µ0)
−L+(q+1)

∑P

k=1,k �=i
ϕk

P∏
k=1,
k �=i

{
1

(1+Ck)(1+Sk) −
1

(1+Ci)(1+Si)

}(q+1)ϕk

·
n∏
h=1

(
1
h!

)ηh

×


 ϕ1∑
l1=0

· · ·
ϕi−1∑
li−1=0

ϕi+1∑
li+1=0

· · ·
ϕP∑
lP =0


 P∑

k=1,
k �=i

lk


!

×




P∏
k=1,
k �=i

(
ϕk
lk

)
{µ0(1 + Ck)(1 + Sk)}lk−ϕk



/




 P∑

k=1,
k �=i

lk


− h


!

· {−µ0(1 + Ci)(1+Si)}
h−
(∑P

k=1,k �=i
lk
) 

ηh

(36)

and

Wi,j=
∑
{η}3

(−1)qq! · (µ0)
(M−1)

{
−L+(q+1)

∑P

k=1,k �=i
ϕk

}
η1!η2!, . . . , ηn!

·

P∏
k=1

{
1

(1+Ck)

}(M−1)ϕk

P∏
k=1,
k �=i

{
1

(1+Ck)−
1

(1+Ci)

}(M−1)(q+1)ϕk

·
n∏
h=1

(
1
h!

)ηh

×


(M−1)ϕ1∑

l1=0

· · ·
(M−1)ϕi−1∑
li−1=0

(M−1)ϕi+1∑
li+1=0

· · ·
(M−1)ϕP∑
lP =0


 P∑

k=1,
k �=i

lk


!

·




P∏
k=1,
k �=i

(
(M− 1)ϕk

lk

)
·{µ0(1 + Ck)}lk−(M−1)ϕk



/




 P∑

k=1,
k �=i

lk


− h


!

· {−µ0(1 + Ci)}
h−
(∑P

k=1,k �=i
lk
) 

ηh

. (37)

Here, if we let

ICA(SP ) =
P∑
i1=1

ϕi1∑
j1=1

j1−1∑
m=0

P∑
i2=1

(M−1)ϕi2∑
j2=1

(
j2 +m− 1

m

)
Tm

· {(1 + Ci1)(1 + Si1)}
j1−m{

T
(1+Ci1 )(1+Si1 ) + 1

(1+Ci2 )

}j2+m
·Ri1,j1(SP ) ·Wi2,j2 · (µ0)j1+j2 (38)

the detection and false-alarm probabilities of the CA CFAR
scheme can be written as

PD = ICA(SP )
{
1 − ICA(0P )

}M−1
(39)

and

PFA =
1
Lp

[
ICA(0P )

{
1 − ICA(SP )

}{
1 − ICA(0P )

}M−2
]

+
Lp − 1
Lp

[
ICA(0P )

{
1 − ICA(0P )

}M−1
]

(40)
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respectively, where 0P is the all-zero vector with P elements.
Since Lp is generally large (> 100), the false-alarm probability
PFA shown in (40) can be approximated as a constant

PFA ≈ ICA(0P )
{
1 − ICA(0P )

}M−1
. (41)

Since P = 1 and ϕP = L in a homogeneous environment, the
vectors SP and 0P both become scalars: i1 = i2 = 1, ϕi1 =
ϕi2 = L,Ri1,j1(SP )= 0 for j1 = 1, 2, . . . , L− 1,Ri1,L(SP )=
βLi1 , Wi2,j2 = 0 for j2 = 1, 2, . . . , L(M − 1) − 1, and

Wi2,L(M−1) = β
L(M−1)
i2

. Thus, (38) can be rewritten as

IH,CA(α) =
L−1∑
m=0

[(
L(M − 1) +m− 1

m

){
T

1 + α

}m

·
{

1 +
T

1 + α

}−L(M−1)−m
]

(42)

which is the same result as that in the study in [10]. Here, the
subscripts H and CA of IH,CA are used to denote “homoge-
neous” and “CA,” respectively.

B. GO CFAR Decision Processor

In the GO CFAR processor, the statistic Zm is formed as

Zm = max(Ym,1, Ym,2), m = 1, 2, . . . ,M. (43)

Since Ym,1 and Ym,2 are independent and identically distrib-
uted, the pdf of Zm is given by [19]

pZm
(z) = pY1(z)FY2(z) + pY2(z)FY1(z)

= 2pY1(z)FY1(z) (44)

where pYi
(z) and FYi

(z) are the pdf and cumulative distribu-
tion function (cdf) of Ym,i, respectively, for i = 1, 2.

Since Ym,i is the sum of (M − 1)/2 independent random
variables {Um}, the mgf of Ym,i is given by

MYi
(t) =

P∏
i=1

(
βi

βi + t

) (M−1)ϕi
2

. (45)

Comparing (45) with (16), it is easy to see that the pdf of
Ym,i is

pYi
(z) =

P∑
i=1

(M−1)ϕi
2∑
j=1

Vi,j
(j − 1)!

zj−1e−βiz (46)

and consequently, the cdf of Ym,i is

FYi
(z) = 1 −

P∑
i=1

(M−1)ϕi
2∑
j=1

j−1∑
r=0

Vi,j

r!βj−ri

zre−βiz. (47)

Here

Vi,j =
∑
{η}4

1
η1!η2!, . . . , ηn!

×
(−1)qq!

P∏
k=1

β
(M−1)ϕi

2
k

P∏
k=1,
k �=i

(βk − βi)
(M−1)(q+1)ϕi

2

·
n∏
h=1

(
1
h!

)ηh

×




(M−1)ϕ1
2∑

l1=0

· · ·

(M−1)ϕi−1
2∑

li−1=0

(M−1)ϕi+1
2∑

li+1=0

· · ·
(M−1)ϕP

2∑
lP =0

×




P∏
k=1,
k �=i

( (M−1)ϕk

2

lk

)
β

(M−1)ϕk
2 −lk

k




·


 P∑

k=1,
k �=i

lk


!

/


 P∑

k=1,
k �=i

lk


− h


!

· (−βi)
(∑P

k=1,k �=i
lk
)
−h



ηh

(48)

for i = 1, 2, . . . , P ; j = 1, 2, . . . , [(M − 1)ϕi/2]; and βi =
1/{µ0(1 + Ci)}. In (48), the symbol

∑
{η}4 represents the

summation over all non-negative integer solutions {ηm} of
the simultaneous equations

∑n
m=1mηm = [(M − 1)ϕi/2] − j

and
∑n
m=1 ηm = q.

Now, as we have done for the CA CFAR scheme, we
first calculate EZk

{Zmk e−βi1TZk} using (46) and (47), and
then obtain P (Uk > TZk|H1). Then, with βi1 = 1/{µ0(1 +
Ci1)(1 + Si1)}, βi2 = 1/{µ0(1 + Ci2)}, and βi3 = 1/{µ0(1 +
Ci3)}, the detection and false-alarm probabilities of the GO
CFAR scheme can be expressed as

PD = IGO(SP )
{
1 − IGO(0P )

}M−1
(49)

and

PFA =
1
Lp

[
IGO(0P )

{
1 − IGO(SP )

}{
1 − IGO(0P )

}M−2
]

+
Lp − 1
Lp

[
IGO(0P )

{
1 − IGO(0P )

}M−1
]

≈ IGO(0P )
{
1 − IGO(0P )

}M−1
(50)
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respectively, where

IGO(SP )

= 2
P∑
i1=1

ϕi1∑
j1=1

j1−1∑
m=0

P∑
i2=1

(M−1)ϕi2
2∑

j2=1

(
j2 +m− 1

m

)
Tm

·
{(1 + Ci1)(1 + Si1)}

j1−m ·Ri1,j1(SP ) · Vi2,j2 · (µ0)j1+j2{
T

(1+Ci1 )(1+Si1 ) + 1
(1+Ci2 )

}j2+m

− 2
P∑
i1=1

ϕi1∑
j1=1

j1−1∑
m=0

P∑
i2=1

(M−1)ϕi2
2∑

j2=1

P∑
i3=1

(M−1)ϕi3
2∑

j3=1

j3−1∑
r=0

(µ0)j1+j2+j3

· {(1 + Ci1)(1 + Si1)}
j1−m {(1 + Ci3)}

j3−r{
T

(1+Ci1 )(1+Si1 ) + 1
(1+Ci2 ) + 1

(1+Ci3 )

}j2+r+m
· (j2 + r +m− 1)!

(j2 − 1)!r!m!
· Tm ·Ri1,j1(SP ) · Vi2,j2 · Vi3,j3 (51)

and

Vi,j =
∑
{η}4

(−1)qq! · (µ0)
(M−1)

2

{
−L+(q+1)

∑P

k=1,k �=i
ϕk

}
η1!η2!, . . . , ηn!

·

P∏
k=1

{
1

(1+Ck)

} (M−1)ϕk
2

P∏
k=1,
k �=i

{
1

(1+Ck) −
1

(1+Ci)

} (M−1)(q+1)ϕk
2

·
n∏
h=1

(
1
h!

)ηh

×




(M−1)ϕ1
2∑

l1=0

· · ·

(M−1)ϕi−1
2∑

li−1=0

(M−1)ϕi+1
2∑

li+1=0

· · ·
(M−1)ϕP

2∑
lP =0

×


 P∑

k=1,
k �=i

lk


! ·




P∏
k=1,
k �=i

( (M−1)ϕk

2

lk

)

× {µ0(1 + Ck)}lk−
(M−1)ϕk

2



/




 P∑

k=1,
k �=i

lk


−h


! {−µ0(1+ Ci)}

h−
(∑P

k=1,k �=i
lk
)
ηh

.

(52)

For a homogeneous environment, (51) can be rewritten as

IH,GO(α) = 2
L−1∑
m=0

[(L(M−1)
2 +m− 1

m

)

×
{

1 +
T

1 + α

}−L(M−1)
2 −m

·
{

T

1 + α

}m
−

L(M−1)
2 −1∑
r=0

×

(
L(M−1)

2 +m+ r − 1
)
!(

L(M−1)
2 − 1

)
!m!r!

{
T

1 + α

}m

·
{

2 +
T

1 + α

}−L(M−1)
2 −m−r

]
(53)

following steps similar to those from (38) to (42).

C. SO CFAR Decision Processor

In the SO CFAR scheme, we have

Zm = min(Ym,1, Ym,2), m = 1, 2, . . . ,M (54)

the pdf of which is given by [19]

pZm
(z) = pY1(z) + pY2(z) − pY1(z)FY2(z) − pY2(z)FY1(z)

= 2pY1(z) {1 − FY1(z)} . (55)

After several manipulations using some of the results ob-
tained in the derivations for the GO CFAR scheme, we can
easily obtain the detection and false-alarm probabilities for the
SO CFAR scheme as

PD = ISO(SP )
{
1 − ISO(0P )

}M−1
(56)

and

PFA =
1
Lp

[
ISO(0P )

{
1 − ISO(SP )

}{
1 − ISO(0P )

}M−2
]

+
Lp − 1
Lp

[
ISO(0P )

{
1 − ISO(0P )

}M−1
]

≈ ISO(0P )
{
1 − ISO(0P )

}M−1
(57)

respectively, where

ISO(SP )

= 2
P∑
i1=1

ϕi1∑
j1=1

j1−1∑
m=0

P∑
i2=1

(M−1)ϕi2
2∑

j2=1

P∑
i3=1

(M−1)ϕi3
2∑

j3=1

j3−1∑
r=0

× {(1+Ci1)(1+Si1)}
j1−m {(1+Ci3)}

j3−r{
T

(1+Ci1 )(1+Si1 ) + 1
(1+Ci2 ) + 1

(1+Ci3 )

}j2+r+m/
(µ0)j1+j2+j3

· (j2 + r +m− 1)!
(j2− 1)!r!m!

· Tm ·Ri1,j1(SP ) · Vi2,j2 · Vi3,j3 . (58)

The function ISO(SP ) can be deduced from IGO(SP ) by
noting the similarity between (44) and (55). In a homogeneous
environment, we can rewrite (55) as

IH,SO(α) = 2
L−1∑
m=0

L(M−1)
2 −1∑
r=0

(
L(M−1)

2 +m+ r − 1
)
!(

L(M−1)
2 − 1

)
!m!r!

·
{

2 +
T

1 + α

}−L(M−1)
2 −m−r {

T

1 + α

}m
. (59)

Here, the subscripts H and SO of IH,SO are used to denote
“homogeneous” and “SO,” respectively.
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