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ABSTRACT 

 
This paper provides a Wiener-Hopf analysis of acoustic diffration by a finite plate focusing 
on the acquisition of higher order series solution and its physical interpretation to understand 
the finite diffraction phenomena in the presence of fluid convection. The formulation 
procedure starts with the use of Prandtl-Glauert transform to elliminate the complexity due to 
the effect of fluid convection and then a simple Helmholtz equation is derived. On the 
boundary condition, since Neumann and Dirichlet ones are imposed along the plate line in 
mixed type, generalized Fourier transform and Wiener-Hopf technique ars used to establish 
concise and exact integral equations in complex domain. The complete solution is obtained by 
a series one whose eigenfunctions are generalized gamma functions. Here, we derived a new 
and exact expression of this special function whose argument is ‘integer + 1/2’ adequate to 
mathematical theory of diffraction. Finally, by exact and asymptotic evaluations of inverse 
Fourier transforms, the scattered and total acoustic fields are visualized in physical 
domain and each term of the solution is physically interpreted as (i) semi-infinite leading 
edge scattering, (ii) trailing-edge correction and (iii) interaction between leading and 
trailing edges, respectively. 
 

INTRODUCTION 
 
Acoustic wave-airfoil interaction has been analytically studied by modeling the airfoil by 
monochromatic wave and thin/flat plate for mathematical convenience. When the wave is 
convected in uniform flow, the problem is governed by convective wave equation and the 
corresponding boundary condition is imposed on the plate as an impermeability condition in 
Neumann type. Since the boundary conditions ahead of and behind of the plate are given by 
Dirichlet type, this 3-part mixed boundary value problem could not be solved by conventional 
methods and thus Wiener-Hopf technique[1] is applied to this problem with integral equation 
formulation. The current existing formulas for far-field acoustics by Amiet[2] and Martinez 
and Widnall’s[3] have been depending on the idea of Schwarzschild[4] who formulated and 
solved successive semi-infnite problems with compensation of unsatisfied boundary condition. 
In this work, a concise and rigorous formulation and solution are introduced based on Wiener-
Hopf technique for an accurate solution of low and high frequency waves in the presence of 
mean flow. In Wiener-Hopf equation, the unknown potential is expanded by a Taylor series in 
its analytic region and a series solution is obtained with the exact and new formulas for 
generalized gamma functions[5]. This solution was obtained in series one and we could 
observe the convergence property of our solution. This series solution is more accurate 
compared to the currently existing asymptotic ones by Jones[6], Noble[1] and Kobayashi[7]. 
Finally, the acoustic field and directivity pattern by a single and multiple edges are 
demonstrated with the inclusion of fluid convection. 
 



PROBLEM DEFINITION 
 

Governing Equation 
A plate of length ‘2l’( -l<x<l, y=0) is encountering a small gust within the subsonic 

uniform flow U parallel to the plate as shown in Fig.1. The plate is assumed to be 
infinitesimally thin and straight and the perturbation to the mean flow is assumed to be a time 
harmonic plane wave with time factor of exp(-iωt). This incoming gust naturally causes that 
the scattered velocity perturbation has the same time factor as incident one.  

 
Figure 1. Finite Plate Encountering Incident Wave in Uniform Flow 

Then, we can construct a partial differential equation with respect to the scattered potential 
only as written in Eq.(1). 
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Boundary Conditions 

(i) The flow normal to the plate should be impermeable. (ii) The veloctiy of scattered 
potential should be continuous everywhere along y=0. (iii) And, potential itself is continuous 
out of the plate. Since the fluid is assumed to be inviscid and the uniform flow is parallel to 
the plate, there is no wake behind the trailing edge thus the Kutta condition is equivalently 
stated by continuous potential condition. 
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Since boundary conditions were imposed on and out of the plate in Neumann type and 
Dirichlet type, respectively, in this chapter, the Wiener-Hopf technique is applied to solve this 
kind of mixed boundary value problems. 
 

REFROMULATION AND WIENER-HOPF EQUATION 
 
Coordinate Transform and Wiener-Hopf Procedure 

(i) Prandtl-Glauert Transform changes Eq.(1) and boundary conditions Eqs.(2-4) into 
Helmholtz equation and similar type of boundary conditions with newly defined incidence 
angle and wavenumber, respectively. 
 
 - Governing Equation: 0),()( 222 =+∂+∂ ηξφκηξ  
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 - Boundary Conditions: 
  (i) ]cosexp[sin)0,( ee ii θκξθκξφη −=  on 0=η  for 11 <<− ξ  
  (ii) )0,()0,( −=+ ξφξφ ηη  for ∞<<∞− ξ  
  (iii) )0,()0,( −=+ ξφξφ  for 1−<ξ  or ξ<1  



(ii) Applying generalized Fourier Transform and Wiener-Hopf technique to Helmholtz 
equation and corresponding boundary conditions yields a Wiener-Hopf equations in 
complex(λ) domain as below. 
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where p=κcosθe , q=κsinθe  and 2/122 )()( κλλγ −= . 
Here, we obtained two equations with four unknowns written in the capital Greek letter. This 
system of equation can be solved not by algebraic procedure but by function theoretic 
procedure which is at the heart of Wiener-Hopf technique. 
 

(iii) By summation/multiplication decomposition technique of Wiener-Hopf procedrue 
and mathematical manipulations, we obtain concise and rigorous integral equations as below. 
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SOLUTION WITH NEW FORMULAS FOR GENERALIZED GAMMA FUNCTIONS 
 
Solution in Complex Domain 

Since there has been no report that this specific kind of integral equation having multi-
valued kernel is exactly solved, we expanded the unknown by a Taylor series in its analytic 
region. Then, we could obtain following equation. 
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generalized gamma function. 
 
Generalized Gamma Functions Occuring in Diffraction Theory 

Since generalized gamma function is not in close form but in integral form, it cannot be 
directly applied to the calculation. And, since currently existing formulas are restricted to 
asymptotic ones and recurrence relations, we needed to find a better formula for our problem. 
In our solution procedure, we could observe that the argument of generalized gamma function 
is “integer+1/2”. 
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And, author could derive an exact and handy formula of generalized gamma function as 
below. 
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Then, we could finally obtain the complete solution in complex domain as below. 
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Figure 2 shows the converging history of )(λA  as the number of series terms are increasing. 
And we could observe that the higher the wavenumber, the less the terms required. 

 
 

Figure 2. Converging History of Series Solution along the Path of Integration 
 
Figure 3 shows the total acoustic field and the directivity pattern of scattered field, 
respectively. The contour clearly demonstates the finite diffraction and the direcvity shows 
the effect of fluid convection.  Here, the magnitude of wave propagating downstream 
decreased whereas the amplitude and the wavenumber of diffracted wave propagating 
upstream are increased due to the compression by flow direction opposite to the wave’s.  

                                   
Figure 3. Contour and Directivity (kl=20, θi=45deg, Blue: M=0, Red: M=0.5) 
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