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Abstract— In recent years, computer vision research has wit-
nessed a growing interest in subset analysis techniques. Inpar-
ticular, eigenvector decomposition has been shown to be a highly
effective tool for problems which has high-dimensional signal
formats (e.g., an image array) but, nevertheless, represent visual
phenomena which are intrinsically low-dimensional. Subspace
analysis is heavily used in appearance-based modelling andrecog-
nition where the principal modes or the characteristic degrees-
of-freedom are extracted and used for description, detection, and
recognition.

The complex nonlinear appearance manifold expressed as a
collection of subsets, and the connectivity among them. The
connectivity encodes the transition probability between images
in each manifold and is learned from a training video sequences.

When we track and recognize the object, a single frame image
is used for that tasks. In this case based on PCA, the undesired
classification/recognition results often occur.

In this paper, Condensation PCA (CPCA) presentation is
introduced, which can be used for spatio-temporal alignment
in tracking and recognition tasks.

I. I NTRODUCTION

Many imaging applications are based on successful image
classification. It is evident that the performance of these
algorithms is directly linked to the performance of the classi-
fication. Thus, in order to be effective, image classification
algorithms need features that well express relevant image
properties.

An important aspect of modelling and visualizing high
dimensional data involves the removal of redundancies by
finding a lower dimensional subspace that best captures the
data characteristics. One of the simplest and most general-
purpose ones is a statistical method known as Principal
Component Analysis (PCA), which finds the linear embedding
subspace that maximizes the variance of the projected data.
Principal component analysis has already successfully been
implemented in image classification for many tasks.

In recent years, computer vision research has witnessed a
growing interest in subset analysis techniques. In particular,
eigenvector decomposition has been shown to be a highly
effective tool for problems which has high-dimensional signal
formats (e.g., an image array) but, nevertheless, represent
visual phenomena which are intrinsically low-dimensional.

Subspace analysis is heavily used in appearance-based mod-
elling and recognition where the principal modes or the
characteristic degrees-of-freedom are extracted and usedfor
description, detection, and recognition.

Subspace methods are often critical in machine learning
where they are used to extract low-dimensional manifolds
comprised of statistically uncorrelated or independent vari-
ables which tent to simplify tasks such as regression, classifi-
cation, and density estimation. Despite this high-dimensional
embedding, the natural constraints of the physical world (and
the imaging process) dictate that the data will, in fact, liein
a lower-dimensional (though possibly disjoint) manifold.The
primary goal of subspace analysis is to identify, represent, and
parameterize the manifold in accordance with some optimality
criteria.

There are many kinds of subspace methods. The Karhunen-
Loeve Transform (KLT) and Principal Component Analysis
(PCA) [1] are examples of eigenvector-based techniques which
are commonly used for dimensionality reduction and feature
extraction. Independent Factor Analysis [2] and more specif-
ically Independent Component Analysis (ICA) [3] is another
linear decomposition which seeks statistically independent and
non-Gaussian components, modelling the observed data as a
linear mixture of unknown independent sources. Nonlinear
PCA (NLPCA) [4], nonlinear Principal Surfaces, Kernel PCA,
and nonlinear latent variable models are various extensions of
these linear techniques.

Principal components can be used to reduce the number of
variables in statistical analysis. Different methods for selecting
the number of principal components to retain have been
suggested. One simple criterion is to retain components with
associated eigenvalues greater than the average eigenvalue.
Principal components have a variety of useful properties:� The eigenvectors are orthogonal, so the principal compo-

nents represent jointly perpendicular directions through
the space of the original variables.� The principal component scores are jointly uncorrelated.
Note that this property is quite distinct from the previous
one.� The first principal component has the largest variance



of any unit-length linear combination of the observed
variables. The

�
th principal component has the largest

variance of any unit-length linear combination orthogonal
to the first

�
-1 principal components. The last principal

component has the smallest variance of any linear com-
bination of the original variables.� The scores on the first

�
principal components have the

highest possible generalized variance of any set of unit-
length linear combinations of the original variables.� In geometric terms, the

�
-dimensional linear subspace

spanned by the first
�

principal components gives the
best possible fit to the data points as measured by the
sum of squared perpendicular distances from each data
point to the subspace. This is in contrast to the geometric
interpretation of least squares regression, which mini-
mizes the sum of squared vertical distances. For example,
suppose you have two variables. Then, the first principal
component minimizes the sum of squared perpendicular
distances from the points to the first principal axis. This
is in contrast to least squares, which would minimize the
sum of squared vertical distances from the points to the
fitted line.

PCA is reformulated in a probabilistic framework, called the
term Probabilistic Principal Component Analysis (PPCA) [5].
PPCA essentially augments the linear mapping from the PCA
space to the observed data space by assuming the observed
data to be corrupted by isotropic Gaussian noise, and the
PCA coefficients to follow an isotropic Gaussian distribution
in the embedding subspace. In the limiting case where the
observation noise variance goes to zero, standard PCA is
recovered.

II. PROBLEM STATEMENT

Recognition in video offers the opportunity to integrate
information temporally across the video sequence, which may
help to increase the recognition rates. Our framework exploits
temporal coherence in the following ways. The appearance
model is composed of a collection of pose manifolds, and
a matrix of transition probabilities to connect them. The
transition probabilities among the pose manifolds are learned
from training videos each one characterizes the probability
of moving from one pose to another pose between any
two consecutive frames. We use the transition probability
to implicitly infer the appropriate pose for each incoming
video frame, and then integrate this information by Bayes’
rule to perform the recognition task. Therefore, our method
effectively captures the dynamics of pose changes and thereby
exploits the temporal information in a video sequence for
recognition.

Usually, there are two kinds of schemes in performing
tracking and recognition task: tracking-then-recognition and
tracking-and-recognition. The tracking-then-recognition ap-
proach attempts to resolve uncertainties in tracking and recog-
nition sequentially and separately. There are several unresolved
issue in the tracking-then-recognition approach: criteria for
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selecting good frames and estimation of parameters for reg-
istration. Also, still-to-still recognition does not effectively
exploit temporal information. A common strategy that selects
several good frames, performs recognition on each frame and
then votes on these recognition results for a final solution
might be ad hoc. To overcome these difficulties, we propose a
tracking-and-recognition approach, which attempts to resolve
uncertainties in tracking and recognition simultaneouslyin a
unified probabilistic framework. To fuse temporal information,
the temporal probabilistic PCA is adopted in this paper.

III. C ONDENSATION PCA

As we considered the problem of the frame-based recog-
nition, Condensation PCA (CPCA) is proposed to solve this
task. The algorithm and operational flow are introduced.

We have developed a framework for prediction and up-
date which propagates the probabilities of recognition and
the recognition parameters over time. The prediction-update
requires the use of a filter. We have used the Condensation
algorithm by Isard and Blake [6]. The probability distribution
over all the recognition parameters is represented by random
samples. The distribution then evolves over time as the input
data change. Kalman filters have been traditionally used for
the purpose of incorporating the temporal aspect. However,
Kalman filtering is based on Gaussian densities that are uni-
modal and, hence, cannot represent non-Gaussian densitiesand
simultaneous multiple hypotheses, which the Condensation
tracker can. The Condensation filter uses dynamical models
to propagate the recognition parameters over time by incor-
porating recognition information at each stage. By combining
it with Factored sampling, we only propagate samples with
higher probabilistic weights over time. Thus, Condensation
filtering together with the factored sampling is appropriate for
our purpose.

A. Formulation

1) Principal components generation: PCA can be defined
in an intuitive way using a recursive formulation. Having
determined the first� � � principal components, the�-th
principal component is determined as the principal component



of the residual:�� � �	
 � ��
� 
� � � ��� � �� � ������� � �� �� � ��� � � (1)

The principal components are then given by�� � � �� � � (2)

Therefore, the new image � is reconstructed by the principal
components�� as following equation, � � !��  � � �� (3)

where N is the number of the principal components. Before
the input image is classified to the predefined class, we should
calculate the principal components��.

In order to reconstruct or recognize the input image, we
should select suitable value of� � . But, as we know, the real
image has lots of noise factor, and the image condition is
always not good. Since real image is effected by illumination,
occlusion, and etc., it is hard to expect that the exact result
is inferred from a single image. In order to prevent to mis-
classification, we should consider the change over time into
PCA algorithm. So, in this research, equation 3 is expanded
to the temporal PCA model. The concept of temporal PCA is
very easy to understand.

Let w" be the PCA parameterw � �� � # � � # � � � # �! � at the
time $. Then w" is presented byw" � �� "� # � "� # � � � # � "! �.
The parameterw represent the state of each class. As previ-
ously considered, the input image can be represented by the
product of principal components and parameterw. Since the
principal components are determined in the stage of training
the system, we can focus main interest on the variation ofw
over time in order to recognize and track the classification of
object.

2) Stochastic pattern dynamics: An accurate dynamical
model is essential for robust tracking and to achieve real-time
performance. The dynamics of an object is described by a%

th order Markov model. A linear-Gaussian Markov model
of order

%
is an autoregressive process (ARP) defined by

x" � & �x"�� #n"�� � � '���� (�x"�� ) *n"�� (4)

wherex" is a state vector at time$, andn"�� is a noise vector
with a known distribution that allows to model uncertainties
in the system function& .

The dynamics of the corresponding probability function
is then described by a mapping that calculates+ �x" � from+ �x"�� � as + �x" � � , + �x" -x"���+ �x"���.x"�� # (5)

where+ �x" -x"��� is the process density describing the stochas-
tic dynamics. This equation is used to estimate the probability
distribution for the next time step.

3) Measurement probability function: As the observed
scene changes over time, the probability function evolves to
represent the altered object states.

We can probabilistically summarize the PCA as follows.

� / � �	
 � 01� .2 �3 # 4 � �� �	
 � 01� 56 7 . �� # 3 �+ 67 �� -3 �.�� �	
 � 01� 89�� � + �: �� -3 �.2 �3 # : �� � � (6)

By Bayesian’s rule, equation 6 is reformulated as follows,� / � �	
 � 01 � 89�� � + �: �� -3 �.2 �3 # : �� �� �	
 � 01 � 89�� � �;+ �3" -: ��" � <89=� � + �: ��" -: �="�� �+ �: �="�� -3"��3> ?"�� ��.2 �3 # : �� �
(7)

From the above function, I will design the probability
function for the adaptation of condensation. I choose the
two term, + �: ��" -: �="�� � and + �3" -: ��" �, in equation 7. The
temporal information of pattern dynamics is included in the
term+ �: ��" -: �="�� �, which is the transition probability between
the manifolds. That is the transition probability+ �: ��" -: �="�� �
is related implicity to the geodesic distance between: ��

and: �=
.

Then, the probability function for Condensation PCA is as
following equation,@ �x" � � + �:xA -:xABC �+ �3" -:xA � � (8)

The transition probability+ �:xA -:xABC � is defined by count-
ing theactual transition between differentD� observed in the
image sequences:

+ �:
xA -:xABC � � �E

x F�G�� H �3G�� I :
xA �H �3G I :

xABC � (9)

whereH �3G I :
xA � � � if 3G I :

xA and otherwise it is 0. The
normalizing constant

E
x ensures that9�=�� + �:

xA -:xABC � � �� (10)

where we set+ �:xA -:xABC � to a constantJ if :
xA is equal to:

xABC .
With : ��

and its linear approximationK�� defined, we can
define how+ �3 -: �� � can be calculated. We can compute theK� distancesL.�� � .2 �3 # K �� � from 3 to eachK��.

We treat L.�� as an estimate of the true distance from3 to: ��
, i.e., .2 �3 # : �� � � .2 �3 # K �� �. + �3 -: �� � is defined as

+ �3 -: �� � � �E �� M�N O� L.���PQ � R (11)

with
E�� � 89��� M�N �� L.��� SPQ � �.



B. The Adaptation of Condensation PCA

When we consider the problem of classifying the
static/unmovable object which changes only its shape, it is
enough to adapt pattern parameterx. But, in order to track the
moving object, we should consider the tracking parameters
such as position and scale of the object in image.

The recognition and tracking parameters which we need to
predict and update are:� (x, y): position. Tracking parameter. Position ranges over

the entire image.� s: scale. Recognition parameter. We use a discrete range
of scales that have been empirically chosen.� w: weight for PCA. Recognition parameter. The product
of w parameter and training PCA image is used for
generating mask image.

The state vector at time$, D" is defined to be a vector of
parametersD" � ��" # T�" # U" # TU" # �" #w" # Tw" �� . The observations
at each stage are the probability values computed by the prob-
ability function. Given this conditional probability distribution,
a discrete representation of the probability distributioncan be
constructed over the possible states. Our proposed algorithm
is divided into four steps:

1) Step 1: PC generation and Initialization: Before starting
to recognize and track the object, the principal components,
which will be used for recognizing the object in further
process, should be determined.

If the problem is the single object tracking, the possible
shape of the desired object is memorized into the principal
component from the training video sequence. Especially, the
tracking object is rigid and only rotatable on top view, the
shape of that object can be generated manually instead of
gathering from video sequence. In case of recognize and track
the multiple object, each object can be considered as the
different class. Also, its shape can be the different manifold of
that class. When the shape-changeable object problem, such
as hand gesture recognition, is considered, it is possible that
the problem is either one class with many manifolds or many
classes with one manifold.

We initialize the parameters provided by the detection
process for the first frame of the video sequence.

2) Step 2: Selection: We use factored sampling to sample
the states at time$ � �. These are then used for propagation to
the next time instant. The sampling method causes the states
to be chosen depending on the associated weights. Samples
with high probability value are more likely to get propagated.

3) Step 3: Prediction: We use a zero order Markov model
for the prediction of a new state and the definition of the state
transition probabilities

x" � & �x"�� #n"��� � (x"�� ) *n"�� � (12)

In equation 12,( and * are the dynamics matrix of the
system and object. That means that the processing time and
the motion of object affects( and* . These parameter settings
are adequate as the motion between subsequent frames of a
video is, in general, limited. In case of a rapid motion, the

tracker can lose the object. In that case, the parameter for
determiningn" is determined more largely.

4) Step 4: Update: The probabilities of the predicted states
are calculated using equation 8. Each predicted sample has the
probability value for selecting for next state. The predicted
sample with the highest probability value is selected as the
next state, then the probability function for next iteration is
updated using the selected sample. Especially,+ �3" -:xA � in
equation 8 means the distance between the input image and
predicted pattern image.

IV. EXPERIMENTAL RESULTS

We demonstrated the performance of Condensation PCA
by applying it to real image sequences. We have implemented
the proposed algorithm on a Pentium-IV 2.4 GHz PC with
512MB RAM, and a Logitech QuickCam-Pro USB camera.
The sequential image was captured at the rate of 10 frames/sec.
Each image has the resolution of 320V240 pixels and depth
of 8-bit gray scale.

For simplicity of experiment, the shape of target object
is known. Its training image for generating the principal
components was gathered from the training video sequence.
Since the purpose of this paper is the real-time recognition-
and-tracking algorithm, the processing time and performance
on real-time operation is most significant. Therefore, after ex-
periments, i will discuss on the performance of Condensation
PCA comparing with other algorithm.

The state vector for Condensation algorithm has the follow-
ing form: D" � ��" # T�" # U " # TU" # �" #w" # Tw" �� (13)

where (�, U) locates the center of the object,� is the scale
factor of the object, andw is the pattern parameter of PCA.
In the experiments, 100 samples were used at each iteration.

A. Experimental Results

Experiments were performed on three cases. In the first
case, experiment was carried out to test the proposed algorithm
for tracking a fast moving object on a complex background.
Second experiment tested the performance in the presence
of camera motion. In third experiments, the simple hand
gesture video sequence was used to testing the proposed
algorithm. Through the experiments, the effectiveness forreal-
time operation will be discussed.

Case 1: Single object moving on the complex back-
ground

The performance of tracking and recognition in the case of
a fast moving object on a complex background is evaluated
in case 1. This experiment was implemented in order to
demonstrate that the motion information is essential for object
tracking, and the temporal information is essential for exact
object recognition. In this simple experiment, I will trackand
recognize the toy car moving on the complex background. In
this experiment, the recognition result may not be useful. But,
if we hope to know how object moves or rotates in a image, we
could use the recognition result. Recognition result contain the
information for the shape change of the target object. Before



Target object

Image database production for principal components generation

Fig. 2. Target object and its image database for principal components
generation. In experiments, the target object is a toy car. Before performing
tracking and recognition task, its image without background was captured
and image database for generating principal components is constructed. This
example shows that 24 images are generated.
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Usually, 95% reconstruction rate is sufficient for minimum of the principal
components which will be used in recognition task.

we perform the tracking and recognition task, we should define
the shape/database of target object. Figure 2 shows that 24
images are produced for generating the principal components.

Using these images, we should generate the principal com-
ponent used in Condensation PCA. Usually, 95% reconstruc-
tion rate is sufficient for minimum of the principal components
which will be used in recognition task. If we use the princi-
pal components under the sufficient number, the recognition
result will be not good. Otherwise, if we use the principal
components over the sufficient number, the calculation time
will be long. Usually, the tracking and recognition task should
be performed in real-time. And, since I want to design the
system to apply the algorithm to real-time system, I selected 16
principal components with tradeoff between calculation time
and recognition performance.

Using the 16 selected principal components, I performed the
tracking and recognition task in case 1. As shown in figure 6,
a toy car moves from left-top to right-bottom position with

(a) frame 3 (b) frame 7 (c) frame 10 (d) frame 13

Fig. 4. Experimental results for Conventional PCA in case 1.
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Fig. 5. Recognition results on case 1.

rotation. Since a toy car is rigid object, its shape doesn’t
change. But, complex background affect the recognition result.
Before comparing the proposed algorithm with frame-based
PCA, the experimental result on case 1 is shown in figure 6.
Testing sequence has 14 frames. Images on algorithm testing
are used with gray scale. In frame 1, Condensation PCA
tried to search a target object on the entire region in image.
After first frame, Condensation PCA adapt its parameter using
temporal information.

Even though the background is complex, Conventional PCA
tracked a toy car without missing any frame. However, the
recognition result is different between Condensation PCA
and frame-based PCA (Conventional PCA). Frame-based PCA
doesn’t use the temporal information. It falsely recognizethe
shape of target object through frame 7 to 10.



(a) frame 1 (b) frame 5 (c) frame 13 (d) frame 17

Fig. 6. Experimental results for Condensation PCA in case 2.

Case 2: With camera motion Second experiment was
carried out in order to show the capability of Condensation
PCA in real-time tracking while the camera is in motion.
This experiment shows the effectiveness to adapt condensation
filter for tracking and recognition. Usually, if there are camera
motion, there occurs many interesting pixels on input image.
Therefore, the computation burden also increases. Especially,
the pixel comparison technique such as the optical flow takes
long calculation time for only tracking. As mentioned ahead, I
want to design the system to operate in real-time at frame rate
of 10 frame/sec. Figure 6 shows the experimental results in
case 2. As same as case 1, Condensation PCA tracked a toy car
through the whole image sequence. Discussion on calculation
time for case 1 and case 2 will be considered in section .

V. D ISCUSSION

In this section, two considerations are described to evaluate
the performance of Condensation PCA compared to other
approaches. Those are tracking-and-recognition performance
and calculation time. In real-time application, those are the
most important factors.

A. Remarks on tracking-and-recognition performance

Usually, other feature tracking approaches such as need
additional recognition operator. But, Condensation PCA per-
form simultaneously tracking task and recognition task since it
uses the parameters which has tracking factor and recognition
factor.

Since Condensation PCA uses the temporal information
within its algorithm, it doesn’t notice false recognition alarm
frame-by-frame. As described in experiment (case 1), next
recognition result is based on the current recognition state.
It makes the recognition performance of Condensation PCA
to be robust.

B. Remarks on calculation time

In real-time systems, calculation time for the proposed
algorithm is of great importance. The computational burden
in the real-time implementation of the algorithm for object
tracking system is the motion estimation. For the better
performance of tracking and recognition, several advanced
algorithms for motion estimation has been employed. Motion
detection method such as optical flow algorithm has been
applied to estimate the object’s motion. But, the computation
of the optical flow field for the entire area of interest requires

considerable computational complexity. It may be only effec-
tive for a static camera. As the camera moves, the system
generates a considerable variation between two successive
images. In presence of camera motion, Condensation filter
shows the robust tracking of object’s motion.

Table I shows the average calculation time for processing
each frame. Experiments are performed in case 1 and 2.

TABLE I

RESULTS OFCALCULATION T IME

Case Recognition Tracking Time
method method (ms/frame)

Case 1 PCA Optical flow 143
PCA Condensation 85

Case 2 PCA Optical flow 351
PCA Condensation 92

VI. CONCLUSION AND FURTHER WORK

In this paper, we have introduced a real-time object tracking-
and-recognition scheme using the probabilistic approach,
called “Condensation Principal Component Analysis (CPCA)”
which can be applied to object tracking and recognition.
Through experiments, the effectiveness of the proposed algo-
rithm was verified.

Through experiments, I have check the performance of
Condensation PCA. In case 1 and 2, the effectiveness of
Condensation PCA (condensation filter on temporal PCA) was
performed. And, case 1 experiments shows the the importance
of temporal information in tracking and recognition task. Its
use will enhance the performance of the system. Also, simple
structure can make the system operate in real time.
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