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Abstract— In recent years, computer vision research has wit- Subspace analysis is heavily used in appearance-based mod-
nessed a growing interest in subset analysis techniques. par-  elling and recognition where the principal modes or the

ticular, eigenvector decomposition has been shown to be adfily  j5racteristic degrees-of-freedom are extracted and imed
effective tool for problems which has high-dimensional sigal description, detection, and recognition

formats (e.g., an image array) but, nevertheless, represénisual . . . .
phenomena which are intrinsically low-dimensional. Subspce Subspace methods are often critical in machine learning

analysis is heavily used in appearance-based modelling anecog- where they are used to extract low-dimensional manifolds
nition where the principal modes or the characteristic degees- comprised of statistically uncorrelated or independent-va
of-freedom are extracted and used for description, deteatin, and  5pjes which tent to simplify tasks such as regression, ifilass

recognition. . . h . . e - )
The complex nonlinear appearance manifold expressed as gz cation, and density estimation. Despite this high-dimemmesi

collection of subsets, and the connectivity among them. The €mbedding, the natural constraints of the physical wonfdi (a

connectivity encodes the transition probability between mages the imaging process) dictate that the data will, in fact,ihie

in each manifold and is learned from a training video sequenes. a lower-dimensional (though possibly disjoint) manifolthe
When we track and recognize the object, a single frame image primary goal of subspace analysis is to identify, represend

Eaiiﬁ?c;?izg}?etégﬁﬁio'ﬁ :Qéilfss;tgﬁs&dc&n PCA, the undeste parameterize the manifold in accordance with some optiynali

In this paper, Condensation PCA (CPCA) presentation is Cfiteria. _
introduced, which can be used for spatio-temporal alignmen  There are many kinds of subspace methods. The Karhunen-

in tracking and recognition tasks. Loeve Transform (KLT) and Principal Component Analysis
(PCA) [1] are examples of eigenvector-based techniquestwhi
are commonly used for dimensionality reduction and feature
Many imaging applications are based on successful imagetraction. Independent Factor Analysis [2] and more $peci
classification. It is evident that the performance of theseally Independent Component Analysis (ICA) [3] is another
algorithms is directly linked to the performance of the slas linear decomposition which seeks statistically indepandad
fication. Thus, in order to be effective, image classifigationon-Gaussian components, modelling the observed data as a
algorithms need features that well express relevant imalggear mixture of unknown independent sources. Nonlinear
properties. PCA (NLPCA) [4], nonlinear Principal Surfaces, Kernel PCA,
An important aspect of modelling and visualizing higland nonlinear latent variable models are various extessién
dimensional data involves the removal of redundancies Hyese linear techniques.
finding a lower dimensional subspace that best captures thérincipal components can be used to reduce the number of
data characteristics. One of the simplest and most genengriables in statistical analysis. Different methods felesting
purpose ones is a statistical method known as Princighe number of principal components to retain have been
Component Analysis (PCA), which finds the linear embeddirgyiggested. One simple criterion is to retain components wit
subspace that maximizes the variance of the projected dassociated eigenvalues greater than the average eigenvalu
Principal component analysis has already successfully be&incipal components have a variety of useful properties:
implemented in image classification for many tasks. « The eigenvectors are orthogonal, so the principal compo-
In recent years, computer vision research has witnessed a nents represent jointly perpendicular directions through
growing interest in subset analysis techniques. In pddicu the space of the original variables.
eigenvector decomposition has been shown to be a highlye The principal component scores are jointly uncorrelated.
effective tool for problems which has high-dimensionahsig Note that this property is quite distinct from the previous
formats (e.g., an image array) but, nevertheless, represen one.
visual phenomena which are intrinsically low-dimensional « The first principal component has the largest variance

I. INTRODUCTION



of any unit-length linear combination of the observed T, o]
variables. Thejth principal component has the largest
variance of any unit-length linear combination orthogonal
to the firstj-1 principal components. The last principal
component has the smallest variance of any linear com- LU
bination of the original variables. aten rics P g
« The scores on the firgt principal components have the ‘ camae ‘
highest possible generalized variance of any set of unit- "™ »
length linear combinations of the original variables.
« In geometric terms, thg-dimensional linear subspace \ell
spanned by the firs§ principal components gives the Uptprancrs
best possible fit to the data points as measured by the
sum of squared perpendicular distances from each data
point to the subspace. This is in contrast to the geometric

mFerpretatlon of least squares regression, which mi electing good frames and estimation of parameters for reg-
mizes the sum of squared vertical distances. For examp

iStration. Also, still-to-still recognition does not effively

SUPPOse you *.‘?"E‘. two variables. Then, the first princip ploit temporal information. A common strategy that stdec
component minimizes the sum of squared perpendlcuéag

) . . . . Several good frames, performs recognition on each frame and
distances from the points to the first principal axis. Thi 9 P 9

. trast to least hich Id minimize t en votes on these recognition results for a final solution
IS In contrast to [east squares, which would minimize tWlight be ad hoc. To overcome these difficulties, we propose a
sum of squared vertical distances from the points to trtlle

fitted i acking-and-recognition approach, which attempts tolves
! e- Ine. _ o uncertainties in tracking and recognition simultaneouslya
PCA is reformulated in a probabilistic framework, calleé thynified probabilistic framework. To fuse temporal inforioat

term Probabilistic Principal Component Analysis (PPCA) [Sthe temporal probabilistic PCA is adopted in this paper.
PPCA essentially augments the linear mapping from the PCA

space to the observed data space by assuming the observed
data to be corrupted by isotropic Gaussian noise, and the
PCA coefficients to follow an isotropic Gaussian distribati  As we considered the problem of the frame-based recog-
in the embedding subspace. In the limiting case where thigion, Condensation PCA (CPCA) is proposed to solve this
observation noise variance goes to zero, standard PCAtask. The algorithm and operational flow are introduced.
recovered. We have developed a framework for prediction and up-
date which propagates the probabilities of recognition and
[l. PROBLEM STATEMENT the recognition parameters over time. The prediction-tgpda
o ) _ requires the use of a filter. We have used the Condensation
__Recognition in video offers the opportunity to integratg, ., i m by Isard and Blake [6]. The probability distritast
mformajuon temporally across the video sequence, Wh@' MBver all the recognition parameters is represented by rando
help to |r|1crerallse the rgcogmt]iolr; ra_tes. Our fra_;r;]ework €ﬂ>€pl0samples. The distribution then evolves over time as thetinpu
temdpolrg co erencg |r} the ICI) owing \;vays. € a_lfppl)garang ta change. Kalman filters have been traditionally used for
modet 1S c?mposg_ or a cbo lf_l(_:t_'on of pose manrl]o S'T?q e purpose of incorporating the temporal aspect. However,
a ma_lt_rlx 0 tran_s_|t_|on probabilities to conr_1ect them. kalman filtering is based on Gaussian densities that are uni-
transmorj probgbll|t|es among the pose mgnlfolds arenlear. modal and, hence, cannot represent non-Gaussian deasitles
fr]?m tra_unln? videos each one charzcterlzes tk;)e prOb‘J"’b'lgimultaneous multiple hypotheses, which the Condensation
of moving rom ]E)ne pos\tjv to anoth er pose etweﬁnbf'li_mécker can. The Condensation filter uses dynamical models
tWO. co_ns_ecu_tlve rames. We use the transition probabi 'Y propagate the recognition parameters over time by incor-
t(.) implicitly infer the appropnate pose for e"_mh incomin orating recognition information at each stage. By commigjni
video frame, and then integrate this information by Baye ,With Factored sampling, we only propagate samples with

rule t9 perform the recognitiop task. Therefore, our meth gher probabilistic weights over time. Thus, Condensatio
effectively captures the dynamics of pose changes andhy'er‘ﬁltering together with the factored sampling is approritr
exploits the temporal information in a video sequence f%r

" ur purpose.

recognition.

Usually, there are two kinds of schemes in performing .

. - ) ; - . Formulation

tracking and recognition task: tracking-then-recogmitend
tracking-and-recognition. The tracking-then-recogmitiap- 1) Principal components generation: PCA can be defined
proach attempts to resolve uncertainties in tracking andge in an intuitive way using a recursive formulation. Having
nition sequentially and separately. There are severabohred determined the firsik — 1 principal components, thé-th
issue in the tracking-then-recognition approach: catdar principal component is determined as the principal compbne

Propagation (Estimation)
using pattern dynamics

Pattern
classfication and tracking

Likelihood maximization
using pdf of pattern

Learning dynamics of PCs ‘

Fig. 1. Flow chart of Condensation PCA
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of the residual: 3) Measurement probability function: As the observed
k—1 scene changes over time, the probability function evolees t
wy, = arg max E{[w” (z — Z w;w! x)]%}. (1) represent the altered object states.
llwll=1 i—1 We can probabilistically summarize the PCA as follows.

The principal components are then given by

k* argmink dH(I, Mk)
arg miny, ka d(z, pu, (z|I)dz (6)

argming Y .-, p(C¥|T)dy (I, C*).

8; = sza:. (2)

Il

Therefore, the new image is reconstructed by the principal
components; as following equation,

By Bayesian'’s rule, equation 6 is reformulated as follows,

N
T = ;wis,- (3) k* = arg ming Z:ll p(Ckilf)dH(L Cki)
| o = argming > .-, {ap(L|CF?)-
where N is the number of the principal components. Before T p(CHICE )p(C | T—1 I, dp(I,C"
the input image is classified to the predefined class, we ghoul 2sm PORIGP O o) Y ] (7))

calculat(;a the principal componenis he _ From the above function, | will design the probability
In order to reconstruct or recognize the Input image, Wgnetion for the adaptation of condensation. | choose the
should select suitable value af;. But, as we know, the real two term p(C’t’”|ij1) and p(L;|C}), in equation 7. The

image has lots of noise fagtor, aqd the image _conqmon l’émporal information of pattern dynamics is included in the
always not good. Since real image is effected by '"um'”at'otermp(cfi|ijl), which is the transition probability between

_occ_:lu5|on, and etc,, itis hard to expect that the exact re.SkHe manifolds. That is the transition probabiljmycfﬂcfﬁ'l)
is inferred from a single image. In order to prevent to mis- :

classification, we should consider the change over time inI rjelated implicity to the geodesic distance betwéfi and
PCA algorithm. So, in this research, equation 3 is expanded. . . . .
to the temporal PCA model. The concept of temporal PCA }S(:rhe_n, the prt(_)bablhty function for Condensation PCA is as
very easy to understand. oflowing equation,

Let w; be the PCA parametev = {w;, ws, ..., wy} atthe
time ¢. Thenw, is presented bw; = {wu,wa, ..., wiN}-
The parametew represent the state of each class. As previ- The transition probability(Cx, [Cx, . ) is defined by count-

ously conS|d(_areq, the input image can be repres_ented by nge the actual transition between differerfi; observed in the
product of principal components and parameterSince the

principal components are determined in the stage of trgini'nmage sequences.

the system, we can focus main interest on the variatiow of

m(X¢) = p(Cx,|Cx,_, )p(1|Cx, )- (8)

over time in order to recognize and track the classificatibn o 1<
ObjeCt' p(CXt |Cxt—1) = A_ Z 5(‘[11*1 € CXt)é(Iq € CXt—l) (9)
2) Sochastic pattern dynamics. An accurate dynamical X =2

model is essential for robust tracking and to achieve riead-t
performance. The dynamics of an object is described bywered(I, € Cx,) = 1if I € Cx, and otherwise it is 0. The
Kth order Markov model. A linear-Gaussian Markov moddlormalizing constanix ensures that

of order K is an autoregressive process (ARP) defined by

m

K > p(Cx,|Cx,,) = 1. (10)
Xe = f(Xe—1,Mm1) = Y AgXe—p + BNy 4) i=1
k=1

. . i . where we sep(Cy, |C! to a constank if Cyx, is equal to
wherex; is a state vector at timg andn;_; is a noise vector (O, [Cx.) X: g

with a known distribution that allows to model uncertaistie
in the system functiory.

The dynamics of the corresponding probability functio
is then described by a mapping that calculap¢s;) from

t—1"
With C*¥ and its linear approximatiofi;; defined, we can
define howp(I|C*?) can be calculated. We can compute the

12 distancesiy; = dgr(I, Ly:) from I to eachLy.
We treatciki as an estimate of the true distance fr@nto

pixi-1) @s Cki ie.,du(I,C*) =dg (I, Li;). p(I|C*) is defined as
p(Xe) = /P(Xt|Xt—1)P(Xt—1)dXt—1, (5) 1 P
. . - p(I|C*) = ~—exp [ -2 (11)
wherep(x¢|x;_1) is the process density describing the stochas- Agi 20

tic dynamics. This equation is used to estimate the proipabil .
distribution for the next time step. with Ag; = Y i, exp(—dz,; /20?).



B. The Adaptation of Condensation PCA tracker can lose the object. In that case, the parameter for
When we consider the problem of classifying th&eterminingn; is determined more largely. _

static/unmovable object which changes only its shape, it is4) St&p 4: Update: The probabilities of the predicted states

enough to adapt pattern parameteBut, in order to track the &€ calculated using equation 8. Each predicted samplébas t

moving object, we should consider the tracking parametdsebability value for selecting for next state. The preetict

such as position and scale of the object in image. sample with the highest probability value is selected as the
The recognition and tracking parameters which we need §*t state, then the probability function for next iteratiis
predict and update are: updated using the selected sample. Especially;|Cx,) in

o (X, y): position. Tracking parameter. Position ranges ovEguation 8 means the distance between the input image and

the entire image predicted pattern image.

« S: scale. Recognition parameter. We use a discrete range IV. EXPERIMENTAL RESULTS

of sca_les that have been er_n_p|r|cally chosen. We demonstrated the performance of Condensation PCA
« w:weight for PCA. ReCOQ”_'“O” parameter. '!'he producﬁy applying it to real image sequences. We have implemented
of w parameter and training PCA image is used Qe hronosed algorithm on a Pentium-IV 2.4 GHz PC with
generating mask image. 512MB RAM, and a Logitech QuickCam-Pro USB camera.
The state vector at timg S, is defined to be a vector of The sequential image was captured at the rate of 10 frances/se
parametersS; = [zy, &4, Ys, Je, ¢, We, We] 7. The observations Each image has the resolution of 32940 pixels and depth
at each stage are the probability values computed by the prgb g-pit gray scale.
ability function. Given this conditional probability didtution, For simplicity of experiment, the shape of target object
a discrete representation of the probability distributtam be s known. Its training image for generating the principal
constructed over the possible states. Our proposed algoritcomponents was gathered from the training video sequence.
is divided into four steps: Since the purpose of this paper is the real-time recognition
1) Step 1: PC generation and Initialization: Before starting and-tracking algorithm, the processing time and perfoicean
to recognize and track the object, the principal componeng real-time operation is most significant. Therefore,radte
which will be used for recognizing the object in furtheheriments, i will discuss on the performance of Condensatio
process, should be determined. PCA comparing with other algorithm.

If the problem is the single object tracking, the possible The state vector for Condensation algorithm has the follow-
shape of the desired object is memorized into the principaly form:

component.from thg .training video sequence. Espeg:ialty, th Sy = [, B, Yty Gty S¢, We, W] T (13)
tracking object is rigid and only rotatable on top view, the o

shape of that object can be generated manually instead“$fere €. y) locates the center of the objeatis the scale
gathering from video sequence. In case of recognize ank trd@Ctor of the object, anav is the pattern parameter of PCA.
the multiple object, each object can be considered as thethe experiments, 100 samples were used at each iteration.

different class. Also, its shape can be the different maahiéd A Experimental Results
that class. When the shape-changeable object problem, suc
as hand gesture recognition, is considered, it is posditae t

the problem is either one class with many manifolds or many tracking a fast moving object on a complex background.

classes with one manifold. . ;
L . . Second experiment tested the performance in the presence
We initialize the parameters provided by the detectio . . . X
of camera motion. In third experiments, the simple hand

process for the first frame of the video sequence. : .
2) Sep 2: Sdection: We use factored sampling to samplequtu.re video sequence was used to testlr_lg the proposed
X ' algorithm. Through the experiments, the effectivenessdal-

the states at time— 1. These are then used for propagation t{) . X :
L . me operation will be discussed.
the next time instant. The sampling method causes the state . . .

. . . ase 1. Single object moving on the complex back-
to be chosen depending on the associated weights. Sam%'r%%nd
with high probability value are more likely to get propaghte . o

] s The performance of tracking and recognition in the case of
3) Sep 3: Prediction: We use a zero order Markov model : . :
- - fast moving object on a complex background is evaluated
for the prediction of a new state and the definition of theesta?. ) . . .
transition probabilities in case 1. This experiment was implemented in order to
demonstrate that the motion information is essential fgeatb
tracking, and the temporal information is essential forokxa
object recognition. In this simple experiment, | will traakd
In equation 12,4 and B are the dynamics matrix of therecognize the toy car moving on the complex background. In
system and object. That means that the processing time did experiment, the recognition result may not be usefut, B
the motion of object affectd and B. These parameter settingsf we hope to know how object moves or rotates in a image, we
are adequate as the motion between subsequent frames obwd use the recognition result. Recognition result dorttee

video is, in general, limited. In case of a rapid motion, thmformation for the shape change of the target object. Refor

Experiments were performed on three cases. In the first
case, experiment was carried out to test the proposed #igori

X¢ = f(X¢—1,N¢—1) = AXe—1 + Bny_1. (12)
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1 Fig. 4. Experimental results for Conventional PCA in case 1.
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Fig. 2. Target object and its image database for principahpmments (a) Recognition result for frame-based PCA
generation. In experiments, the target object is a toy cefof® performing g -
tracking and recognition task, its image without backgwras captured ) @ @ a @ | i

and image database for generating principal componennistrticted. This it imege ‘_g&jb
example shows that 24 images are generated. -
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/ Fig. 5. Recognition results on case 1.

rotation. Since a toy car is rigid object, its shape doesn’t
Fig. 3. Plot for reconstruction rate (%) vs number of priatipomponents. change. But complex background affect the recognitionlres
Usually, 95% reconstruction rate is sufficient for minimurtioe principal P . .
components which will be used in recognition task. Before comparing the proposed algorithm with frame-based
PCA, the experimental result on case 1 is shown in figure 6.

Testing sequence has 14 frames. Images on algorithm testing

we perform the tracking and recognition task, we should defide used with gray scale. In frame 1, Condensation PCA

the shape/database of target object. Figure 2 shows thatttiad to search a target object on the entire region in image.

images are produced for generating the principal compenerfifter first frame, Condensation PCA adapt its parametergusin
Using these images, we should generate the principal cot@poral information.

ponent used in Condensation PCA. Usually, 95% reconstrucEven though the background is complex, Conventional PCA

tion rate is sufficient for minimum of the principal compoten tracked a toy car without missing any frame. However, the
which will be used in recognition task. If we use the princit€cognition result is different between Condensation PCA

pal components under the sufficient number, the recognitifd frame-based PCA (Conventional PCA). Frame-based PCA

result will be not good. Otherwise, if we use the principgoesn’t use the temporal information. It falsely recogritze
components over the sufficient number, the calculation tins@ape of target object through frame 7 to 10.
will be long. Usually, the tracking and recognition task gl
be performed in real-time. And, since | want to design the
system to apply the algorithm to real-time system, | setbt
principal components with tradeoff between calculationeti
and recognition performance.
Using the 16 selected principal components, | performed the
tracking and recognition task in case 1. As shown in figure 6,
a toy car moves from left-top to right-bottom position with
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(a) frame 1 (b) frame 5 (c) frame 13 (d) frame 17

generates a considerable variation between two successive
images. In presence of camera motion, Condensation filter

shows the robust tracking of object’s motion.

Fig. 6. Experimental results for Condensation PCA in case 2. Table | shows the average calculation time for processing

each frame. Experiments are performed in case 1 and 2.

_
» s considerable computational complexity. It may be only effe
i. 1§ tive for a static camera. As the camera moves, the system

-~ Um

TABLE |

Case 2: With camera motion Second experiment was
RESULTS OFCALCULATION TIME

carried out in order to show the capability of Condensation

PCA in re.al—time tracking while_ the camera is in motion. Case | Recognition |  Tracking Time
This experiment shows the effectiveness to adapt condensat method method (ms/frame)
filter for tracking and recognition. Usually, if there aremeara Case 1 PCA Optical flow 143
; ; ; ; ; ; PCA Condensation 85
motion, there occurs many interesting pixels on input image :
. . . Case 2 PCA Optical flow 351
Therefore, the computation burden also increases. Edlyecia PCA Condensation 92

the pixel comparison technique such as the optical flow takes

long calculation time for only tracking. As mentioned ahglad

want to design the system to operate in real-time at franee rat VI. CONCLUSION AND FURTHER WORK

of 10 frame/sec. Figure 6 shows the experimental results inln this paper, we have introduced a real-time object tragkin

case 2. As same as case 1, Condensation PCA tracked a toyaggrrecognition scheme using the probabilistic approach,

through the whole image sequence. Discussion on calcnlatiglled “Condensation Principal Component Analysis (CPCA)”

time for case 1 and case 2 will be considered in section . which can be applied to object tracking and recognition.
Through experiments, the effectiveness of the proposeat alg
rithm was verified.

V. DISCUSSION Through experiments, | have check the performance of

In this section, two considerations are described to etalu&ondensation PCA. In case 1 and 2, the effectiveness of
the performance of Condensation PCA compared to otfepndensation PCA (condensation filter on temporal PCA) was
approaches. Those are tracking-and-recognition perﬁMmaperformed. And, case 1 experiments shows the the importance

and calculation time. In real-time application, those are t Of temporal information in tracking and recognition tasts |
most important factors. use will enhance the performance of the system. Also, simple

structure can make the system operate in real time.

A. Remarks on tracking-and-recognition performance
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