
 

1. INTRODUCTION 
 

This article describes the development of the adaptive 
moving overset grid technique for CAA(Computational 
Aero-Acoustics) which is a branch of CFD mainly focusing on 
sound radiating and scattering phenomena. Although the 
overset grid has many outstanding strong points when 
employed to complicate shaped-body or multi-body related 
problem, there have been not many CAA research using it. 
CAA needs higher order of accuracy numerical method 
compared to conventional CFD. That means high order 
interpolation should be applied also when interpolation is 
conducted. Or the acoustic wave may be not conserved and 
dissipated when it passes through the overlapped region. In 
this research, high order Lagrange interpolation method is 
suggested as a solution. From the error analysis, the order of 
interpolation has been determined and the interpolation 
constants are obtained by Newton’s method for minimizing 
the error. The applicability of this interpolation method has 
been validated successfully with BVI(Blade vortex 
interaction) problem. And finally it is confirmed through this 
research that high order numerical schemes which have been 
used for CAA problem before work well with overset grid 
technique also.  

 
 

2. NUMERICAL METHOD 
 
2.1 Governing equation  

As a governing equation, 2D Euler equation (Eq.1) 
transformed to computational space from physical space is 
used.  
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2.2 Numerical scheme  

For simulating the acoustic properties, the order of 
numerical scheme should be high enough and here the ‘high 
order compact finite difference scheme’[1] is applied as 
spatial difference scheme. This scheme can keep up to 10th 
order accuracy, but in this research, 4th order of accuracy form 
is used and the margins are used for optimizing the constant  
used in Eq.2.  
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As a time difference schemes corresponding to the 4th order 
spatial difference scheme, Runge-kutta method which is the 
4th order of accuracy also is used. When one apply center 
scheme, the dispersion may be appeared if there are sudden 
characteristic change such is shock wave. To reduce this kind 
of error, Kim and Lee’s ANAD(Adaptive nonlinear artificial 
dissipation) model[2] is used. And as a non reflecting 
boundary condition, also Kim and Lee’s GCBC(Generalized 
characteristic boundary condition) is applied[3]. 
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2.3 Calculation process 
The fig.(1) shows the overview of calculation process of 

this research. At very first, the calculations of the ‘Runge – 
kutta method’s first loop are conducted at each sub grids 
independently with initial condition. During that, the spatial 
derivatives are calculated and the ANAD and the GCBC 
model are taken in. After then, the calculation results for each 
sub domains are exchanged each other with high order 
interpolation method. This domain connectivity should be 
conducted for every ‘Runge-kutta’ step. In case of moving 
grid system, grid shifting is happen after each time marching 
step. In this research one of the sub domains is designed to 
contain a moving vortex from start to end, so the vortex 
detection algorithm is needed to make the sub domain move to 
the place where vortex is. As a last stage for a time step, the 
holes should be defined newly for the calculation of next time 
step. These stages would be repeated until one get the final 
result. 
 
 

3. OVERSET GRID TECHIQUE 
The overset grid technique needs two additional algorithms 

compared to unique grid type technique in a wide sense. The 
first thing is domain connectivity which is done by 
interpolation. The second thing is hole treatment for excluding 
the hole points from the time marching calculation.  
  
3.1 Domain connectivity  

The very first step for interpolation is searching a donor 
points which should be the nearest ones from the receiver 
point. In this research, the AIS(Alternative Index searching) 
method[4] is used with modified form. The AIS method starts 
with defining a initial point arbitrary. And the next candidate 
donor point is determined by the sign of dot product between 
vectors which are overlapped with grid stencil and the vector 
from candidate point to receiver point. By repeating this 
inspection, the position of the candidate point would approach 
to receiver point (and to final correct donor point also) with 
diagonal direction. The ‘diagonal direction’ means the number 

of inspections could be decreased compare to the ‘stencil 
direction’ and we could save the calculation resource. 

 

 

Fig. (2) Alternating Index Searching method [4] 
 
 
The fig.(3) is a schematic of the single dimensional 

interpolation model. The black body points are donor points 
and the hollow one means a receiver point. The distances 
between each donor points are equal as unit length because 
this model is placed in the computational space after being 
transformed from the physical space.  

 
 

Fig. (3) A schematic of 1D interpolation model 
 
 

The number of donor points corresponding to a receiver 
point determines the interpolation order of accuracy. A small 
number of donor points not only makes the algorithm simple 
and the calculation speedy but also the interpolation error big 
and the quality of result low. To conserve the high gradient 
properties of a vortex when it is passes from a sub domain to 
other sub domain, interpolation error should be very small. To 
determine the level of acceptable error level, An error analysis 
is conducted with respect to various number of donor points. 
The generalized 1D Lagrange interpolation method is 
expressed as Equation (3). The number of donor point is N. 
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For Fourier error analysis, let       =         .        
The local error for specific wave number  , is Equation(4) 
and the integrated error for a unit wave number domain is 
Equation(5). 
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Fig.(4) Local error(top) and Integrated error(bottom) 

 

The local and integrated error are figured out as fig.(4).  
Regarding the magnitude of the objective acoustic wave, 4th 
order of accuracy (N=4) is selected as a proper interpolation 
method and applied to every interpolation in this research. To 
practical use of its strength in error, the positions of the 
selected donor points should not be offset to specific direction 
which means the receiver point should be located between the 
2nd and 3rd donor points in case of N=4. 
 

The relation between offsets δ  and the interpolation 
constant is expressed as Eq. (6). The offset represent the 
relative distance between the receiver point and a donor point. 
The offset would be obtained from cyclic calculation with 
Newton method. The constants for 2D problem can be 
determined by simply expanding the 1D problem. 
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3.2 Grid size effect for interpolation  

To find out the acceptable max ratio of grid size for 
conserving the vortex between the background grid and the 
vortex containing grid, an validation test is conducted as 
follow. The test system is consist of a large rectangular 
background grid and a dense square grid containing a vortex. 
The number of grid points of square grid is restricted as 
36points per radius of the vortex when the size of background 
grid is changed as 8:1, 10:1, 20:1, 30:1 and 40:1 in terms of 

ratio of grid size. 10:1 means the size of a cell in the 
background grid is 10 times larger than  that of vortex 
containing grid. The vortex whose radius is 0.04 and the small 
grid are located at (-4,0) initially and would move to (4,0) with 
free stream. The speed of free stream is Mach 0.5. After the 
movement, the level of conservation of the vortex can be a 
gauge for determining the performance of each cases.  

Fig. (5) shows that in case of 8:1, 10:1 and 20:1, the 
y-direction velocity is almost same with exact solution. With 
this result one can conclude there is no problem to increase the 
ratio of the cell sizes up to 20:1. That means one can use only 
quarter number (2D) of grid points for background grid 
compared to the case of 10:1. 

 

Fig.(5) Y-direction velocity for the vortex 
 
3.3 Hole points treatment  

At the overlapped region some grid points of one sub grid 
could be located on the another grid’s body where the 
objective fluid is not exist. This kind of points are called hole  
and should be excluded from the calculation to avoid 
unphysical result. This will be done by modifying the LHS 
and RHS of the derivative matrix as follow(Fig(6)). 

 

 
  

 
Fig.(6) Matrix modification for the hole, LHS(top) and RHS(bottom) 
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4. VALIDATION  
 
4.1 Moving vortex 
 

This problem is for the validation of the numerical schemes 
and overset grid methods developed together. The grids 
system is consist of two sub grid, one is the background grid 
with hole region at the center and the other is a sine function 
shaped grid which is covering the hole region. At first the 
vortex located at (-5,0) and will move to right side with a free 
stream whose speed is Mach 0.5. The vortex will move on the 
background grid first and be transferred to sine shaped grid 
and will be on the background grid again after passing through 
the hole region. Fig.(7) shows the grid system and initial 
position of the vortex for this problem. 

 

 
Fig. (7)  The overset grid system for a moving vortex 

 

 
 Fig. (8)  The velocity contour for moving vortex 

 
Fig. (9)  Y-direction velocity comparison at T=20, 

single grid(-) vs. overset grid(.)  
 

According to the overall velocity contours in Fig.(8), the 
shape of vortex is almost same between initial state(T=0) and 
after transfer(T=20). Fig.(9) shows the comparison of the 
y-direction velocity at the vortex centerline between two 
vortexes, one was moved on single grid from initial to final 
and the other is transferred vortex which is passed from one 
grid to other twice by interpolation. The former one could be 
considered as reference solution. The y-direction velocity is 
perfectly matched each other. That means there is little 
dissipation during the interpolation process and the numerical 
method used in this research is useful for vortex related 
problem. 
 
 
4.2 Blade-vortex interaction 
 

To simulate BVI phenomenon three different kinds of sub 
grids are used together like fig.(10). The first one is the large 
background grid which is Cartesian type and the second one is 
C-grid surrounding NACA0012 airfoil. The last third one is 
the small rectangular grid which would keep up with the 
moving vortex. Let us call the grids as background grid, airfoil 
grid and vortex grid respectively. Usually, the Blade-vortex 
interaction problem needs very dense mesh at the vortex path 
from start to end even the vortex stay there not so long time. 
However, there is no this kind of waste here because of the 
vortex grid. The total number of grid points is not so big even 
though the grid is very dense because its overall coverage is 
small. That is one of the most charming benefit for applying 
overset grid to a vortex related problem.    

 

 
Fig. (10) The overset grid system for a BVI. 

    
Initially the center of vortex and the vortex grid are located 

at (-6, 0) when the leading edge of the airfoil is located at (-1, 
0). There is no angle of attack and the Scully model is used as 
the vortex model. 
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4.2.1 05.0,26.0,16.0,8.0 =−==Γ=∞ cv rYM  

Two similar but different cases are analyzed here. In case 
of the first problem, there is a small interaction distance 
between the center of vortex and the chord line of the airfoil. 
And because of the fast free steam, it is Mach 0.8, a shock  
would appear near the airfoil.  

For the first problem, initial steady state is obtained using 
only background grid and airfoil grid. Fig.(11) is the pressure 
contour in steady state long time after the free stream starts. 
The pressure coefficient distribution on the airfoil surface is 
well matched with the results of other researchers, Oh[5] and 
Pulliam[6]. (Fig. (12)) 



  
 

 
Fig. (11)  Pressure contour near the airfoil (M=0.8). 

 
Fig. (12)  Pressure coefficient on the airfoil surface (M=0.8). 
 

With this initial condition, a vortex and the third vortex 
grid is embedded at 5c before position from the leading edge. 
Fig.  (13) shows the pressure contour sequence 
corresponding to the position of the vortex. The parts surround 
by black line are hole region where all points inside are hole 
points. The position and shape of hole region change from 
time to time according to position of the vortex.  
 

 

 

 

 

 

 

Fig. (13) Sequence of pressure contour (M=0.8) 
 

One can observe that even after passing through the shock 
region, the shape of vortex recovered clearly. The lift variation 
of the airfoil obtained here agree well with other researcher’s 
results[7,8].  

 

Fig. (14) Lift variation 
 



  
 

 
4.2.2 05.0,0.0,13.0,5.0 ===Γ=∞ cv rYM  

At second case, there is no interaction distance between the 
vortex and leading edge and the free stream speed is Mach 0.5. 
This problem is for observing the behavior of the acoustic 
wave which is radiated from the leading edge. The overlooks 
of sequence shots is not so difference from case 1.(Fig. (15)). 
But the radiating acoustic wave is very clear and the wave also 
pass the interpolation boundary smoothly without any 
discontinuation like the vortex. 

 

   

Fig. (15) Sequence of pressure contour (M=0.5) 
 

Fig.(16) is the directivity of RMS value for acoustic 
pressure at the moment when the center of vortex coincide 
with leading edge. The values are obtained on the circle which 
radius is 5c from the leading edge. The overall pattern of 
present result agree well with Cho[22]’s result. 

 

 

Fig. (16) Sequence of pressure contour (M=0.5) 

 

 
Fig. (17a) acoustic pressure at (-1 , 5) 

 
Fig. (17b) acoustic pressure at (-1 , -5) 

 
Because of the circulation of the vortex, the pressure 

pattern is not symmetric and the pressure has a maximum 
value at vertical below position from the leading edge.  

Two figure above(fig.(17) are acoustic pressure value 
according to the time at (-1, 5) and (-1, -5) each. They have 
max value at T=15 and that tells us the acoustic wave occurred 
at T=10, the moment the vortex impinge the leading edge. The 
trend is very similar with Cho’s result. He used same 
numerical scheme but blocked grid instead of overset grid. 
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