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Robust Control of a One-Link Flexible Arm
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Abstract

Lightweight robot manspulators have considerable structural flezs-
bality. Hence, the elastic behavior of the robot arms must be consid-
ered in control system design. Owing to the complezity of & dynamic
model of flexible robots, it is desirable to design a controller simple.
Furthermore, since the robot must handle a wide variety of payloads,
the robustness of the control system becomes very important. In this
paper, a simple and robust control system 1is proposed. The closed-
loop system 13 shown to be stable in the sense of Lyapunov and robust
to uncertainty in system parameters. The simulation results are pre-
sented to show the robustness of the simple controller against payload
variations.

1 Introduction

Robot manipulators have been widely used both in dangerous cir-
cumstances and for industrial applications. They have been tradition-
ally modeled as a chain of rigid links with colocated actuators and
sensors, to ensure stable and reliable control. Moreover, the robot
arms are generally made large and massive in order to remain its
rigidity while carvying an assigned payload. Present generation ma-
nipulators are limited to a load-carrying capacity of typically 5-10%
of their own weight by the need of structural rigidity.

Today, there 15 an increasing requirement for manipulators with
high speed, precision and payload-handling capabilities as a result of
demand for higher productivity. These qualities cannot be achieved
with existing massive and heavy robot manipulators, For higher op-
erating speeds, the manipulators should be made lightweight, but
lighter members are more likely to deform elastically. Therefore, it is
necessary to include dynamic effects of the distributed link flexibility
in the model of the manipulators.

Such flexible manipulators provide diverse advantages as follows:
higher speed, smaller actuators, lower energy consumption, lower
overall cost, safer operation due to reduced inertia, less bulky de-
sign, lighmer overall mass to be transported, and so on. For the flexi-
ble manipulators, however, the equations describing the manipulator
dynamics become more complex; besides, they complicate the con-
trol system design which focuses primarily on the compensation for
bending effects. Furthermore, since the robot must handle a wide va-
riety of payloads, the robustness of the control system becomes very
important.

Recently, numerous investigators have analyzed several modeling
methods of a flexible manipulator. One of them is a modal analysis
method. Dorinant eigen-modes are identified by experiment, ap-
proximated modes are obtained through solving the governing par-
tial differential equations and assumed modes can be chosen from ap-

roximation of the actual system dynamics. Finite element method
FEM) has also been used. This method discretizes the actual system
into a number of elements, whose elastic and inertial properties are
obtained from the actual system. These methods give the approxi
mated static and dynamic properties of the actual system. Because
the dynamics of mechanical systems with distributed flexibility are
described by infinite-dimensional mathematical models, and a finite-
dimensional model of the system is needed for the design of a finite-
dimensional controller.

There are also various schemes proposed for the design of con-
trollers, A technique for end-point control corroborated by experi-
mental work has been introduced by Cannon and Schmitz (1]. By us-
ing the Linear Quadratic Gaussian (LQG) controller design method,
they successfully implement an noncolocated controller for the robot,
However, since the controller is sensitive to parameter variations, its
performance will be degraded when payload or typical parameters of
the robot are varying with time. Rovner and Cannon {2] used Re-
cursive Least Square (RLS) algorithm to identify the system transfer

function with unknown payload on the tip. The scheme requires a
learning period which takes about two seconds with a sampling fre-

93

quency of 50Hz. The experiments have shown good results, but the
robustness of the algorithm still depends upon the number of coef-
ficients of the transfer function to be identified. Other approaches
are as follows: finite element approach, modal control, Model Ref-
erence Adaptive Control (MRAC), conventional control, feedforward
control, and combined state space "and frequency domain techniques,
acceleration feedback control (3]-[5]-

For the design of a flexible manipulator controller, there are two
facts to consider: first, the simplicity; second, the robustness. Owing
to the complexity of dynamic model of flexible manipulators, it is
desirable to design a controller simple. Furthermore, robustness of
the controller is also very important for the robot to handle a wide
range of payload variations. In general, control systems with state
observer have been used. The control aystems, however, require heavy
computational load. Moreover, observer must be varied in operation
to cope with payload variations. Hence, load forecast is needed.

In this paper, a simple and robust controller is proposed. For the
simplicity, the control system only uses measurable data such as: hub
ratio, tip position and tip ratio. Sliding mode control method, one of
robust control methods, is introduced for the robustness. On account
of robustness, load forecast is not necessary.

The remainder of this paper is organized as follows: The mathe-
matical model of a single-link flexible arm is described in Section 2.
On the basis of the mathematical model, a simple and robust con-
troller is designed in Section 3. In Section 4, simulation results on
position control with payload variation are presented. The conclu-
sions are given in Section 5.

2 Dynamic model of a fiexible robot arm

Consider a uniform, slender beam connected via a rigid hub to the
armature of an electric motor and having a payload as shown in Fig-
ure 1. Where z, L, p, E', I and M, are distance along the length of
the beam, length of the beam, mass per unit length, Young’s modulus
of elasticity and rmsa-sccnonal area moment of inertia and payload
mass. ), is the hub inertia and [, is the inertia of the beam about
the motor armature { = —pL
The following assumptions are made:

® The deflection wis small(w < L).

e Euler-Bernoulli beam assumptions are used.

» Beam inertia and flexibility are uniformly distributed over the
link length.

e The motion occurs only in the horizontal plane.
Because of the last assumption, the effects of gravity are not consid-
ered.

The displacement of points along the deformed profile of the beam
is described in terms of radial and circumferential coordinates z and
y. From Figure 1, it is apparent that y is related to the angle of
rotation of rigid mode, q,, and the flexural displacement of the beam,
w, as follows:

y(@,t) = w(z,t) + z-¢,(t).

In terms of this variable a fourth-order partial differential equation
of motion for a single-link flexible arm is given in the form (1

S
Eigxf +o5 =0 (1)
with four boundary conditions:
y(0,8) = 0, (2)
EIY'(0,t)+1 ~ by = 0, (3)
EIy"(L,t) = 0, (4)
Eny"(L,t) — Mp4(L,¢) 0. (5)



Then the following equation can be obtained.
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The model can be reconfigured in the state-space form
x = Ax+ BT, (6)
y = Cx
where
x* = {q% & @ @ 4 4. |
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where * denotes transpose and the three rows of C are the tip-position
sensor, tip-rate sensor and the hub-rate sensor measurement vectors.

Practically, a model based on as few as four modes may be suitable
for simulation and control design. In this paper, the model based on
three modes is considered.

3 Design of a controller

In this paper, one of the control objectives is to introduce addi-
tional damping into the flexible motion. This has been done by using
additional sensors to measure the flexible link vibrations and feed
measurements of sensors back to the controller. Generally, strain
gauges have been used in order to observe the states. This method,
however, leads to heavy computational load. Hence, a simple control
system using only directly measurable outputs is presented in this
section.

Theoretically, any flexible system has an infinite number of elas-
tic modes. Due to physical limitations, a limited number of sensors
and actuators can be applied, thus restricting the controller design
to a few critical modes in case of state utilization. Note that outputs
of sensors would contain information about the unmodeled as well
as the modeled modes. This is referred to as observation spillover.
Similarly, the control action would affect both the modeled and un-
modeled modes leading to the control spillover. Based on the work
done by Balas |3, the higher unmodeled modes may have a harmful
or destabilizing effect on the system response. To avoid the obser-
vation spillover, low pass filtering of the sensor outputs can be used.
Control spillover can also be avoided by inserting the Low Pass Filter
(LPF) in the controller output stage. In this paper, the controller is
designed based on the model equation of (6}.

For the system (6), consider the following switching surface

Srigid = €rigia + Ar€t. (M

In the sliding mode, $rigiq = 0. Applying this condition to equation
(7) leads to the following equation:

Srigid = Erigid T A1ée
= —§,+ A1€s
1
= =74 A€
T + Aiee
= 0.
Therefore, equivalent iuput torque is
Teq = IrMée.
Now, consider the following control law
r = Ip (Arée + Azén + Ksgn(s)), (8)
where Ay > 0, Az >0, and

3 = &+ Aey,

1 >0
1] s=0

agn{s)
-1 s<0,
K (B — 1)A1éy — Agén| +m,
n > 0.

I

With this controller, following lemma is obtained.

lemma 1 For the system (6) and the proposed controller (8), the
sliding mode exists provided that
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Furthermore, following lemma is also obtained for the stability.

theorem 1 For the system (6) and the proposed controller (8), the
overall system is stable in the slvding mode.

Proof
Let us choose the Lyapunov function candidate as

1 ; 3 L
V== 242 4 g2 21 T2
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i=0
Then V is a p.d.f. And in the sliding mode,
s=¢ +Aeg =0.

Therefore,
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- Now, consider the meaning of the term Agép S = hub error rate
) in the controller {8). Assume that the exact value of Ir is known

and K is zero for the simplicity of analysis. Then the control law is
rewritten in the form:

r=Ir (z\lég + /\zéh) . (9)

And the system (6) is rewritten as follows:

’
.. (0
G rwig = 20
Ir

Inserting equation (9) into this equation gives:

G+ [¢;(o) (,\, 2%9 + Az¢$(0))] g+ [“’3 + V"i(o)K‘%L_)] &

=610 (3 (a0 2424 + 22 o+ #0010

In this equation, the right-hand side does not contain the tth mode
and the sign of ¢}(0 ¢‘%L) are not same for all modes. Therefore, it
is desirable to use the ¢, factor in the feedback mechanism. Since
the factor Azéy leads to the term Ay (¢§(0))2 g, additional damping
is introduced. Because dominant vibrational mode is generally the
first one and there is an uncertainty in payload, design of ), value
must be based on these factors.
4 Simulation results

In order to demonstrate the effectiveness of the controller devel-
oped in the previous section, numerical simulation has been per-
formed on a single-link three-mode flexible manipulator. Numerical
paramters for the manipulator are given in Table 1. The model pa-
rameters for the first three flexible modes with various payloads are
given in Table 2, 3 and 4.




In the Table 2, 3 and 4, mode number zero means the rigid mode.
For the rigid mode, ¢,{x) is defined as follows:

o[z} ==

From these tables, it is obvious that the system parameters are largely
affected by payload variations.

It is assumed that the flexible manipulator is initially at rest. The
controller in equation (21) is discontinuous and it is well known that
synthesis of such a controller gives rise to chattering of trajectory
about sliding surface s = 0. In order to avoid the chattering phe-
nomenon, the function sgr(s) in the controller gm) has been replaced
by sat(s). The function sat(s} is defined as follows

where § > 0.

Figs. 2~7 show the performance of the proposed controller. These
figures demonstrate that the tip angular position §, is successfully
regulated for various payloads. Rise time and settling times are given
in Table 5 and 6. In these tables, the rise time is defined as the time
required to rise from 10 percent to 90 percent of its final value, and
the settling time is defined as the time to decrease and stay within §
percent or 1 percent of its final value. Figure 3 shows that there is
no chattering in the control torque 7.

In practice, gripper of the flexible manipulator may drop payload
in the course of motion. In this case, the payload is changed abruptly.
Figs. 4~7 show the performance of such a case. In Figure 4 and 5,
gripper drop the 0.4kg payload at 0.7sec. Similarly, in Figure 6 and
7, dropping of payload is occurred at 0.9sec.

5 Conclusions

A simple and robust control system of a single-link flexible arm is
proposed. This controller do not need to estimate the modal func-
tions of the system. It only uses output measurement such as: tip
position, tip position rate and hub rate. Conventicnal control system
uses vibrational modes of the system as states. Hence, it requires
heavy computational load because of many matrix and vector opera~
tion. In addition, because the conversion matrix that is used in state
estimation is affected by payload variation, conventicnal control sys-
tem may be sensitive to payload variation and parameter uncertainty.
In the proposed controller, these drawbacks are eliminated by using
robust control law: variable structure controller. It is clear that the
controller proposed in section 3 has a simple form. In order to verify
the robustness of the controller, the simulation results are given in
section 4.
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Nomenclature
¢ ¢ ith modal function.

#: ¢:(z), th mode shape, 0 <z < L.
o0
By (: Z %ﬂq‘(z)) , tip angular position (rad).
i=0
o
8, (= S #1(0)gi(t) | , hub angle (rad).
i=0
Bq desired tip angular position (rad).
€ (s= 84 — 8;), error of tip angular position (rad).
en (= 84 ~ 8x), ervor of hub angle (rad).
Crigid (= 64— 9,(t)), error of rigid mode (rad).
Iy (= I+ I + M,L?), total inertia, Ir,,, < It < I,
iT (: \/];::'];.:) , estimated total inertia.

It minimum value of total inertia, Iy, ,, > 0.
Ir,., maximum value of total inertia.

B8 (:: \/IIL"-‘L) , margin of Ir.
1

Table 1: Parameters for the flexible manipulator

Parameters Symbol Numerical Value
Modulus of elasticity E 6.9 x 101% N/m?
Cross-sectional area moment of inertia I 8.31934 x 107! m*
Length L 1.0m
Linear density I3 0.233172 kg/m
Inertia of the beam I 7.7724 x 10712 kgm?
Hub inertia Iy 5.176 x 1073 kgn?
Mass of gripper 0.3 kg
Mass of payload [0, 0.4] kg
Mass of total payload M, |0.3, 0.7) kg
Maximum total inertia It .. 0.7829 kgm?
Minimum total inertia Irin 0.3829 kgm?
Estimated total inertia Ir 0.5475 kgm?
Margin of Iy { = \/IT—,,,,JITW" ) B 1.4299
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Table 2: Modal parameters for the first three modes with no payload

Mode Number | Natural frequency
t w ( rad/sec ) #:(0) | ¢:(L)
0 0 1 1
1 42.0 5.478 | ~0.359
2 108.2 5.920 0.217
3 261.0 2.387 | -0.178

Table 3: Modal parameters for the first three modes with
payload

0.2 kg

Mode Number | Nutural frequency

3 w; (rad/sec ) $:(0) | ¢:(L)
0 o 1 1

1 41.1 6.731 | ~0.286
2 107.4 7.367 0.167
3 259.7 2.965 | -0.135

Table 4: Modal parameters for the first three modes with

0.4 kg
payload .

Mode Number | Natural frequency
7 w; ( rad/sec ) $:{0) | ¢:(L)
0 0 1 1
1 40.6 7.788 | ~0.244
2 107.1 8.565 0.140
3 259.1 3.446 | -0.113

Table 5: Rise time and Settling times for various payloads

Payload 0.0kg 0.2kg 0.4kg
Rise Time ( sec 0.554 0.640 0.610
Settling time { 5% ) 0.966 1.016 1.004
Settling time ( 1% ) 1.354 1.390 1.348
Table 6: Rise time and Settling times
Payload dropping time No dropping 0.7sec 0.9sec
Rise Time ( sec ) 0.610 0.660 0.610
Settling time ( 5% ) 1.004 1.044 1.024
Settling time ( 1% ) 1.348 1.460 1.414

[

Figure 1: Geometry of the flexible arm
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