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Abstract

This article explores the nature of the American options dynamics and introduces
a general methodology to derive the analytic valuation formula of the American
options using the knowledge with diffusion equations. The formula is derived
from the structural mechanics between early exercise premium and the European
options transformed into the thermal physical environment. The whole
information on the dynamics of the American options is provided while deriving
the formula. And the reason why the optimal exercise boundary has to be
determined in the solution process of the valuation formula is explained. At last,
we expand the valuation formula to be applied to several other American options.
This will give us the rigorous theoretical framework for the American options and

strengthen the understanding of the American option valuation structure.



The theoretical researches on options have been done from 19C, but it is by
Black and Scholes in 1973 that the first logical option valuation model has been
developed. The landmark publication of Black and Scholes (1973) and Merton
(1973) have represented an epoch-making discovery in tackling the option
valuation problem. They have derived the model by solving a differential
equation that makes use of the knowledge related to stochastic calculus and heat
or diffusion equations. Because the Black-Scholes theory delivers a closed form
solution to the valuation of European options, we can use the quantitative

sensitivity analysis of option to control risk and to establish an effective trading.

But, most options that are publicly traded are American options. The
distinctive feature of an American option is its early exercise privilege, that is, the
holder can exercise the option prior to the date of expiration. However, the early
exercise feature of American options brings with it substantially more complicated
payoff structures. The early exercise boundary is not known beforehand but has
to be determined as part of the solution in the solution process. For that reason,
no general closed-form valuation models for American options that would parallel

the black-Scholes model for European options.

The American option valuation problem has been studies over a quarter century.
Broadie and Detemple (1996) make a comparison between the existing methods
for the valuation of the American options. Huang, Subrahmanyam, and Yu
(1996), and Ju (1998) categorize the past research papers into several classes.

Among them, the finite difference method of Brennan and Schwartz (1997), the



risk neutral valuation approach of Cox and Ross (1976), the binomial method of
Cox, Ross and Rubinstein (1979), the analytic valuation model with infinite series
of integrals of Geske and Johnson (1984), the quadratic approximation method of
Barone-Adesi and Whaley (1987) and MacMillan (1986), the analytic valuation of
Kim (1990), Jacka (1991), and Carr, Jarrow and Myneni (1992), the lower and
upper bound approximation of Broadie and Detemple (1996), accelerated
recursive method of Huang, Subrahmanyam, and Yu (1996), multi-piece
exponential function method of Ju (1998), the tangential approximation method of
Bunch and Johnson (2000) and so on can be mentioned as the most important

works that leave big footprints in American options valuation theory.

Kim (1990), Jacka (1991), and Carr, Jarrow and Myneni (1992) derive the
analytic American option valuation formula in different methods, in which they
show that the American option value is made up of the corresponding European
option value and an integral part representing the early exercise premium.
However, the exact formula for optimal exercise boundary is hidden in a veil of

mystery as yet.

Kim (1990) has divided the time space into a finite number of discrete
exercisable points in time. Then he gains the values of the live American call
option at the consecutive points in time from the maturity. After finding out the
recursive relationship between the value of the live American call option at each
point and ignoring a negligible term in equation, he obtains the analytic solution

for American call options that can be exercisable at discrete points in time. By



taking a limit for the time interval, he finally derives the analytic solution to the
valuation problem of American options on assets that pay continuous dividends.
This is in accordance with the limit of the formula provided by Geske and

Johnson (1984).

Jacka (1991) provides the verification of the essential uniqueness of the
solution to the free boundary problem and the identification of the integral
equation satisfied by the stopping boundary. He obtains the valuation result

using probability theory applied to the optimal stopping problem.

Carr, Jarrow and Myneni (1992) provide another proof of the American Options
valuation formula using stochastic calculus and offer intuition on the nature of the
early exercise premium. In particular, they show that the early exercise premium
is the value of an annuity that pays interest at a certain rate whenever the stock

price is low enough so that early exercise is optimal.

The purpose of this article is to provide the information on the structure of
American option dynamics and introduce a general methodology to derive the
analytic valuation formula of the American options using the knowledge with
diffusion equations. This process is sure to be much helpful to understand the
mechanism of American options as a function of stock price and time variables.
This methodology can be regarded as the expansion of the Black-Scholes model
to the American options valuation. The expression will help us to gain rich

understanding and intuition for the whole composition and dynamics of American



options. And this article examines the reason why the optimal exercise boundary

cannot but be determined in the valuation process as well.

This article is organized as follows. In section 1, we transform the American
put option into the diffusion equation formulation. In section 2, we examine the
meaning of the transformed formulation in the viewpoint of both finance and
thermal physics. In section 3, we explain the detail of the American option
dynamics as time goes on and derive the American options valuation formula with
diffusion equation approach. In section 4, we show that the valuation formula
derived in section 3 is expanded to be applied to several other American options.

Section 5 is a summary and conclusion.

1. Basic Transformation of American Put Option

We shall first consider an American put option written on an underlying stock
price S at time #, with expiration time 7 and strike price K. The American option
valuation problem is to be solved in the domain D = {(S,f) | 0<S<oo, 0<t<T}.
Assume the stock price dynamics follows a lognormal diffusion process or a

geometric Brownian motion

dS = (r —q)Sdt + oSdw,

where dW, is a standard Brownian motion or a Wiener process, 7 is the risk free



interest rate, o is the volatility, and ¢ is the continuous dividend rate which is less
than . Throughout the article, 7, K, , ¢ and o are all taken to be constant and

greater than or equal to 0, unless otherwise noted.

Black-Scholes Partial Differential Equation for a European put option on an

asset paying continuous dividends ¢ with value P.(S,?) is

10°P, ., OP oP,
—— () +—=(r-0)S+—=-rP. =0 1
yasr P g TRk )

with initial and boundary conditions
P.(S,T)=max(K - S,0), (2)
— —-r(T-1)

P(S,t)=0, as S=ow.

4

Equations (1), (2) and (4) are also applied to the American put options case. But
we should consider one more condition for American put options for during the

options’ lifetime.

The characteristic of the early exercise feature of American options leads to the
condition that American options must be worth at least their corresponding
intrinsic values, namely, max(S-K,0) for a call and max(K-S,0) for a put during the

life. To represent this constraint, we should introduce a new expression to the



original problem instead of Equation (3) as follows,

P.(S,¢)= P.(S,T) = max(K —S.,0) (5)

where P,(S,f) is American put option value.

Moreover, the governing equation of Equation (1) is not always true for the
American options. We can divide the domain of the stock price and time into
two regions, an exercise region (0<S<S.(¢#)=B(¢)) where the holder of the American
option had better exercise it and a holding region (B(f)=S.(t)<S<wo) where the
holder of the American option had better hold it rather than exercise it. Here,
S«(f) is commonly referred to as the critical stock price at time ¢ and B(¢) is
referred to as the optimal exercise boundary at time ¢#.  For the exercise region, if

we substitute P, = K-S into Equation (1), we obtain

2 2
ok, +‘7_Sza€a+(r_5)saa—rg<o. (6)
oo 2 oS os

It is more convenient to work in traditional normalized coordinates with the
stock price variable normalized by the strike price, the time variable normalized
by the volatility and the strike price, the critical stock price variable normalized by
the exercise price, and the American options value normalized by the exercise

price respectively,



S
x=In—, 7
. )

2

r:%(T—t),. (8)

_1n 30
b(r)=In= >, 9)
P.(S,t) = Ke™" " u(x,7). (10)

And we introduce a non-dimensional measure of the risk free interest rate and the

dividend rate,

r

6):02/2’ (11)
0
¢_O_2/2' (12)

If we substitute Equation (10) into Equation (1), with
1 1 2
a=—2O-¢-1.  p=-{@-¢-1) +6)

then Equation (1) can be transformed into the basic heat or diffusion equation

problem in thermal physics as follows,

We can transform the original problem into the diffusion equation form separately



for the exercise region and for the holding region, to understand the structure

more clearly.

If we substitute Equations (7) — (12) into Equations (1) — (6), we gain

2
g_u_zil:f(x’r)’ —wo<x<b(r), 7>0, f(x,7)=0
T Ox
2
2&_2_?:0, b(t)y<x<ow, 7>0
T Ox

with initial and boundary conditions

1 1
~(0-¢-D)x  —(O-g+D)x
u(x,0) =u,(x) =max(e? —e? ,

u(x,7)=0 as x= oo,

0 if 0<f-9<1
u(x,7)=| 1 if 6-¢=1 as X~ —oo,
o if 0—-¢>1

L 0-g-1)x %(9—¢+1)x

1 2
- ( {£(0-¢-1)"+0}z
u(x,7) > max((e? —e )-e?

0).

(13a)

(13b)

(14)
(15)

(16)

(17)

Equation (13a) is for the exercise region and Equation (13b) is for the holding

region. Equations (13) — (17) are explained in the next section in more detail.

2. The Meaning of the Transformed Model



The Black-Scholes Partial Differential Equation of the American options has
minus value at the exercise region, which leads to an opportunity of arbitrage.
We might expect that the holder of an American option will choose the exercise
policy in such a way that the expected payoff from the option will be maximized.
If we could buy a put option and immediately exercise the put option to sell the
stock in the market, we could make a riskless profit by the difference. To prohibit
this chance, we need to supplement an appropriate amount of value to the
governing equation of the American options to make balance. The variable u(x,7)
expressed in Equations (13a) and (13b) can be interpreted as the American option

value in finance and as the temperature profile in thermal physics as well.

Equation (13a) has incorporated with a new term f(x,7). Physically speaking,
the f{x,r) can be interpreted as an internal dimensionless heat generation
distribution in the domain. As we can forecast, if the heat is generated inside a
conductive material with initial temperature, the temperature profile becomes
higher than that of the simple conduction or diffusion of initial temperature with
no heat generation. Therefore, we can say that if the supplementary amount of
option value f{x,7) is added up to the exercise region, it comes to diffuse to the
both infinite side ends as 7 increases and make an effect of push up the value of
the put option all over the stock price domain. We know already that the deep-
in-the-money value of the European put option is on a gradual decrease as 7
increases.  So, we need to add up some amount of value to keep the American
option value be equal to the intrinsic value of the put option at the exercise region.

f(x,7) is to be calculated in the next section.



Equation (14) is the initial condition of partial differential equation problem
that represents the initial temperature distribution at =0, which corresponds to the
terminal value of the American put option at expiration. Equations (15) and (16)
are boundary conditions that have been incorporated in American option valuation
model. If we solve the diffusion equation problem only with Equation (13b),
(14), (15) and (16) for -co<x<oo, this process leads us to the Black-Scholes model

for the European put option.

Equation (17) has been transformed from Equation (5). At the exercise region,
the European put option value decreases gradually and is getting lower than the
intrinsic value which is identical with the right hand side terms of Equation (17).
So, physically speaking, the amount of heat that is needed to complement the
decreased temperature should be provided by the internal heat generation, as
mentioned earlier. Because the internal heat generation is needed continuously
to make up for the loss at the exercise region, the temperature profile should be
equal to the right hand side of Equation (17). We can conclude that the

following equation is satisfied at the exercise region.

Lo—g-1)x %(9—¢+l)x

1 2
{(0-¢-1)"+0}
u(x,7) = (e? —e )-e? '

, —o0<x<b(r). (18)

where b(7) is the critical point at 7 defined in Equation (9).

10



And, Heat or diffusion equation has two important properties: the one is the
linearity and the other one is the uniqueness of the solution. And these
properties lead to the principle of superposition that the general solution of a
linear homogeneous ordinary differential equation of order » is a linear
combination of n linearly independent solutions with # arbitrary constants.
These properties are of use in deriving the analytic valuation formula of the

American options.

3. Derivation of the American Options Valuation Formula

We begin with the calculation of the amount of heat generated internally, f{x,7),
which implies the additional value of the American option to protect the
opportunity of arbitrage. The truth is that we do not need to calculate f(x,7) at the
exercise region, because we already know the exact temperature profile formula
meaning the intrinsic value in Equation (18). But, we still need to obtain f{x,7)
because the generated heat flows into the holding region to make an effect on the

temperature profile that means American options value.

f(x,7) can be obtained both by physical method and by mathematical method.
But mathematical method is much easier than the physical method. Equation
(18) is governed by Equation (13a) at the exercise region. So, we can calculate
the first derivative of Equation (18) with respective to 7 and the second derivative

of it with respective to x, and put into Equation (13a). With an easy mathematics,

11



we can obtain

Lo-p-1)x %(6’—¢+1)x

f(x,7)=(0-e? —¢-e

— w0 < x <h(7).

1
. 6{1(9—¢—1>2+9}r (19)

Thanks to the property of linearity, the solution of diffusion equation problem of

Equations (13) — (17) can be expressed as the sum of the following two problems:

Yy _Tlr vy <b(). £20. [(r0)20
——F = f(x,71), —o<x<b(r), 720, X, 7)zY,
or o (20a)
Uy, (x,0) =u,(x) =0, (20b)
and
2
%_a_uzbszo, —o<x<oo, 7>0,
or  Ox (21a)
1 1
u(x,0),, =u, (x)= max(ez(e o —62(9 ’ l)xao), (21b)
u, (x,7) =0 as Xx=oo, (21¢)
0 if 0<f-¢g<l
M(X,T)= 1 lf 0_¢=] as X~ —o0,. (21(1)

o if 0-¢>1

We can use the fact that knowing the basic Green’s function G(x-& 7-®) allows us

12



to write the solution of the first problem immediately in terms of a superposition

integral, which is also implied by linearity.

First, we shall attack the problem of Equation (20). Laplace Transform and
Fourier Transform can be used to get the solution to the problem represented in
Equation (20). But, to understand the dynamics of heat diffusion in more detail,

we shall consider the following problem very similar to Equation (20).

ou 0u
A 5(x-8)5(-w), - , 720,
5. o (x—¢&)o(r —w) 0<x<w, T (222)
u(x,0)=0, (22b)
u(x,7) =0, as |x| ~ ©, (22¢)

where ¢ and w are fixed constants, -00< & <oo, 0< @ <oo and ¢ denotes the Dirac
delta function. We may interpret Equation (22) physically as the equation
governing the temperature in an infinite conductor that is subjected to a
concentrated unit source of heat at the point x= ¢ This source of heat is turned
on only for the instant 7=w and is absent for all other times. And the conductor
has a constant temperature that we normalize to equal zero, which represent the

initial condition, Equation (22b), and boundary condition, Equation (22c).

The solution of the inhomogeneous diffusion Equation (22) is the following

Green’s function, which is a function of x= ¢ and 7=w:

13



1 :
Gx-Er—-@)=—— 9 JAG-0)
2\ (1t —w)

At 7=w, only the position of x= ¢ has the temperature and others has 0. The
initially sharply peaked profile is gradually smoothed out as 7 increases under the

action of diffusion. These are remarkable features for diffusion phenomena.

Since we get the solution of the diffusion equation with d(x-¢) and Jd(z-w),
linearity implies that the solution of the inhomogeneous diffusion Equation (20)

due to the f(& w) is just

0

u,0= [ [ rG0)r6u-tr-0) dodz.

E=—00 @=—0

Here, f{x,7) is defined in Equation (19). The substitutions give

b(r) o

1 1 1 2
Z(6—-¢-D)x Z(O-ptD)x (61 +0)7
u, 0= [ [ @ —g e

Lf:—oo W=—0

y S S o (6’ /4(r-0) dodé,

27 (1 — w)

With some mathematical treatment, we obtain

14



1

(x,7)=0-¢> e " IN(=d,,)dw

=0

T
(0-¢-1)x {%(9—¢—1)2+9}r
U, e

T
Lo-prx (Lo-pr1ypie J‘
2 e 4

—p-e e?"ON(d,)dw. (23)

where

N(d11)=
g - b(r)-x (0-¢+D)J2r-0)
> >

2 -0)
aAllz :dn _\/Z-

N stands for the standard Gaussian cumulative distribution function.

As mentioned earlier, f(x,7) is the additional value of the American option to
protect the opportunity of arbitrage or the amount of heat generated internally at
the exercise region. And the temperature is apt to get down below the u(x,7) of
Equation (18) at the exercise region because the heat tends to flow from high
temperature to low temperature. The temperature of the exercise region is
always higher than that of the holding region. So, the heat at the exercise region
flows into the holding region as 7 increases and this makes the temperature of the
holding region be on a gradual increase. Once the temperature of a point in x
gets higher than the initial temperature, the point becomes to be classified into the

holding region.

At every time, we should determine the critical point b(z), meaning the optimal

15



exercise boundary'. This is the right end of the region where we should generate
heat to complement the decreased value. At the critical point, the temperature is
no longer lower than the initial temperature even without heat generation. The

critical point plays a role of a point of inflection mathematically as well.

The critical point plays a great role in option valuation theory. Two factors
make influence on the temperature of the holding region. The one is the length
of the region where heat generates internally. And the other one is the amount of
heat which is generated at each point of the domain internally. The critical point
moves left as 7 increases so that the length of heat generation is on a gradual
decrease. And the amount of the generated heat differs as 7 increases. As these
two factors vary, the amount of heat that flows into the holding region differs as ¢
increases. Consequently, the temperature of the holding region affects from
them. And then we should adjust the critical point because the temperature of
the holding region moves higher than ever. This means critical point affect the
temperature of the holding region and the temperature of the holding region affect
the critical point recursively. They are mutually connected very closely. For
this reason, it is impossible to extract only the optimal exercise boundary from the
analytic valuation formula or to make the valuation formula with no optimal

exercise boundary.

Next, we shall deal with the problem of Equation (21). To solve the

' The free boundary problem associated with the optimal stopping problem for American put
options was studied by McKean (1965) and van Moerbeke (1976).

16



homogeneous diffusion equation (21), we note that it is equivalent to

2
o Sy, (x).  —o<x<on, 720,
or Ox (24a)

u(x,7)=0, 720, (24b)

As can be verified by noting that integrating the inhomogeneous diffusion
Equation (24a) with respect to 7 from =0 to =0" gives u(x,7)=uo(x). Since the
right hand side of (24a) vanishes when >0, Equations (21) and (24) are

equivalent.

The solution of the inhomogeneous diffusion Equation (24) is the following

Green’s function, which is a function of x=¢.

1 o (9’ 4r

Gx-¢,1)=—F—
(x=s.7) 2\ (7 — )
To solve (21), we set f{& ) in Equation (23) equal to d(w)-uo(¢) and obtain

o0

U (1) = j un(&)-Gx—E,7) dé

E=—0

0
1 1
1 J‘ 65(9—¢—1>x_85(9—¢+1>x o6 i g £
2\ rt -

oDt L (0-d-1) 1
S(0-g-Dx (041

1 2
A O—p+1)x+—(0-¢+1)" 7 A
—e N(d)—e2 T N Cay, 29
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where

X

1

+—(@—-g+1)V2r,
N2t 2( ¢+
32:d1—\/2r

d =

This corresponds to the Black-Scholes Model for European put option valuation.
Now, it is the right time to sum up the two results, Equations (23) and (25) so
that we can get the solution for the original diffusion equation problem of

Equations (13) — (17),

u(x,7) =u, (x,7) +u,,(x,7).
If we retrace our steps back, writing

P,(S,t) = Ke™ " u(x,7) (11)

and making change of variables back with Equation (7)-(12), then we gain the

final American put options valuation Formula as follows.

18



P,(S.0)= Ke""N(~d,)~ Se " 'N(~d,)

T~ T—t
+7K I e " N(—d,,)du—oS I e " N(~d,,)du (26)
u=0 u=0

where

logS+(r—5+;0'2)(T—t)

d=—32X . dy=d —oT—t

oNT —t

+(r—§+;az)(u)

ou ’

log———
8 Bu+1)

d, = d,=d, —ou

The first term in Equation (26) is the European put option price while the second
term represents the early exercise premium”. The early exercise premium has
originally been created from the additional heat generation f(x,7) in Equation (20a)
and its distribution in the rage of 0<S<S.(f) as time passes, so the integrand

function in the second term is always positive.

Unfortunately, the solution to the integral equation of the early exercise premium
representation cannot be explicitly know because of the interaction between the
optimal exercise boundary and the American options value, and thus it needs to be

solved numerically.

Following the same solution processes as the American put option valuation

formula, we can obtain the analytic valuation formula for American call option

* Jamshidian (1992) has interpreted the early exercise premium as the delay exercise
compensation

19



Cu(S,?) as follows:

C.(S,t)=8Se* "' N(d,)-Ke """ N(d,)

T T—t
+ 05 I e ™N(d,))du—rK J. e “N(d,,)du 27)
u=0 u=0

Like the American put option case, the first term in Equation (27) is the European

call option value while the second term represents the early exercise premium.

Equations (26) and (27) give us the information that the American option
valuation formula consist of the European option valuation formula and early
exercise premium. So, we can conclude that the existence of the analytic
European option valuation formula is the necessary condition for the existence of
the analytic American option valuation formula. If we confirm the valuation
formula for a European-style option contract is such a shape as Black-Scholes
model, we can easily obtain the analytic American option valuation formula for
the contract with Equations (26) and (27). Some examples are given in the next
section. Even if the option contract is far from the shape of plain vanilla option
such as exotic options, we can obtain the analytic American option valuation

formula by following the whole solution process explained in section 3.

With Equations (26) and (27) we can confirm that the decision of early exercise
depends on the competition between the time value of the strike price K and the

loss of insurance value associated with the holding of the option. The early

20



exercise of an American put on a non-dividend paying asset may become
preferable when the gain in the time value of K — receiving amount of cash K now
rather than at the time of expiration — exceeds the insurance value of the put. [Kim

(1990), Carr, Jarrow and Myneni (1992)]

4. Application of the Analytic American option valuation formula

We shall deal with the problem of valuing American options on stock index,

foreign currency, futures and exchange contracts in this section’.

Under the condition that we assume the same stochastic process for stock, stock
index, foreign currency and futures, it is well known that the options on stock
index, foreign currency, and futures are very similar with stock paying continuous
dividends. This means they have very similar partial differential equation one
another. It is also known that the dividend yields (g;) in stock index option, the
foreign currency risk-free interest rate (7y) in currency option, risk-free interest
rate (r) in futures options act like the dividend yields (¢) in the option on stock
paying continuous dividend for the European style option. We can conclude that
the American option valuation formula on them is analogous to Equation (26) for
put option case and Equation (27) for call option case because of the necessary

condition between them.

% Most traded stock and futures options are American style, but most index options are European
style.

21



Let P,S,K,1,q,0,t,.T) denote the value of the American put option, P,(S,?) of
Equation (26) and C,(S,K,%q,0,t,T) denote the value of the American call option,

C.(S,?) of Equation (27), where all parameters are included.

For the stock index options, we obtain the value, P,, of the American put and
the value, C,, of the American call options by replacing ¢ with ¢g; and S with /

meaning of stock index in the American option valuation formula as

])a =I)a(I’K’riq1'50-)t7T)

c,=CU,K,r,q,,0,t,T).

For the foreign currency options, by replacing g with rrand S with £ meaning
of the foreign currency exchange rate in the American option valuation formula,

we obtain the put and the call valuation formula as

f)a :Rl(E’Kﬁrﬁrf)O-’t’T)

C,=C,/(E,K,r,r;,0,tT).

The identical process is applied for the futures options case. We obtain the
value, P,, of the American put and the value, C,, of the American call options by
replacing ¢ with » and S with F' meaning of futures price in the American option

valuation formula as

22



I)a :Pa(F,K7r7r)G,t’T)

¢, =C,/(F,K,r,r,0,t,T).

This is in accordance with the valuation model for the American futures options of

Kim (1994).

Lastly, the American option valuation formula can be extended to the valuation
of the American options to exchange one asset S, for another S,, whose payoft at

expiration is

max(a,S, - a,S,,0)

where a, and a, are the constant quantity of asset S, and S, which pay continuous

dividend at rate ¢, and ¢, and has the volatility of 6, and &, respectively.

Margrabe (1978) developed the pricing equation for a European Exchange
option. Because the necessary condition between European and American
option valuation formula, we can easily extend the equation into the analytic

American Exchange option valuation formula as

Ca = Ca(alSl’aZSZ’QIﬂqzﬂaAataT)

where

23



A 2 2
<7=\/0'1 +0;, —2po, 0o, .

Here, p is the correlation between the two assets. This is in accordance with the

concept of Bjerksund and Stensland (1993).

4. Summary and Conclusion

This article presents a general methodology to derive the analytic valuation
formula for the American option. We consider American options in the frame of
diffusion equation like Black-Scholes model. Undergoing the derivation process,
we can understand the basic structure and dynamics of the American options
including the corresponding European options and figure out the close correlation
between optimal exercise boundary and American option valuation. This article
concludes that optimal exercise boundary and the American valuation formula are
so mutually connected that we cannot extract only one of them independently of

the other.

We can obtain the analytic American option valuation formula easily if the
contract is similar to plain vanilla option like options on stock indices, currency,
futures and exchange one asset for another. Even if the option contract is far
from the shape of plain vanilla option such as exotic options and corporate

securities, we can obtain the analytic American option valuation formula by using

24



the general methodology developed in this article.
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