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요약문 
 

  본 논문은 미국식 옵션의 동적 가치 변화를 연구하고, 확산 모형에 대한 

지식을 응용하여 Black-Scholes 모형과 이론적 기반을 공유하면서 미국식 

옵션의 분석적 가치 평가 모형을 유도할 수 있는 일반적 방법론을 제시한다. 

이 가치평가 모형은 열물리학의 기반 위에서 유럽식 옵션과 조기 행사 

프리미엄의 구조적 변화에 대한 분석으로부터 유도되어진다.  이 모형의 

유도과정을 통해 미국식 옵션의 전체적인 가치 변화 과정에 대한 이론적 

근거를 이해할 수 있다.  또한 조기 행사 경계가 미국식 옵션 가치평가 과정 

내에서 유도되어야만 하는 이유에 대한 이론적 근거에 대하여도 접근한다.  

마지막으로 몇몇 다른 미국식 옵션의 가치평가에 어떻게 확장될 수 있는가와 

그 예를 간단히 소개한다.  이러한 연구는 미국식 옵션의 이론적 기반 및 

구조적 변화에 대한 이해에 큰 도움을 준다. 
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Abstract 
 

This article explores the nature of the American options dynamics and introduces 

a general methodology to derive the analytic valuation formula of the American 

options using the knowledge with diffusion equations.  The formula is derived 

from the structural mechanics between early exercise premium and the European 

options transformed into the thermal physical environment.  The whole 

information on the dynamics of the American options is provided while deriving 

the formula.  And the reason why the optimal exercise boundary has to be 

determined in the solution process of the valuation formula is explained.  At last, 

we expand the valuation formula to be applied to several other American options.  

This will give us the rigorous theoretical framework for the American options and 

strengthen the understanding of the American option valuation structure. 

 
 



The theoretical researches on options have been done from 19C, but it is by 

Black and Scholes in 1973 that the first logical option valuation model has been 

developed.  The landmark publication of Black and Scholes (1973) and Merton 

(1973) have represented an epoch-making discovery in tackling the option 

valuation problem.  They have derived the model by solving a differential 

equation that makes use of the knowledge related to stochastic calculus and heat 

or diffusion equations.  Because the Black-Scholes theory delivers a closed form 

solution to the valuation of European options, we can use the quantitative 

sensitivity analysis of option to control risk and to establish an effective trading.   

 

But, most options that are publicly traded are American options.  The 

distinctive feature of an American option is its early exercise privilege, that is, the 

holder can exercise the option prior to the date of expiration.  However, the early 

exercise feature of American options brings with it substantially more complicated 

payoff structures.  The early exercise boundary is not known beforehand but has 

to be determined as part of the solution in the solution process.  For that reason, 

no general closed-form valuation models for American options that would parallel 

the black-Scholes model for European options.  

 

The American option valuation problem has been studies over a quarter century.  

Broadie and Detemple (1996) make a comparison between the existing methods 

for the valuation of the American options.  Huang, Subrahmanyam, and Yu 

(1996), and Ju (1998) categorize the past research papers into several classes.  

Among them, the finite difference method of Brennan and Schwartz (1997), the 
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risk neutral valuation approach of Cox and Ross (1976), the binomial method of 

Cox, Ross and Rubinstein (1979), the analytic valuation model with infinite series 

of integrals of Geske and Johnson (1984), the quadratic approximation method of 

Barone-Adesi and Whaley (1987) and MacMillan (1986), the analytic valuation of 

Kim (1990), Jacka (1991), and Carr, Jarrow and Myneni (1992), the lower and 

upper bound approximation of Broadie and Detemple (1996), accelerated 

recursive method of Huang, Subrahmanyam, and Yu (1996), multi-piece 

exponential function method of Ju (1998), the tangential approximation method of 

Bunch and Johnson (2000) and so on can be mentioned as the most important 

works that leave big footprints in American options valuation theory. 

 

Kim (1990), Jacka (1991), and Carr, Jarrow and Myneni (1992) derive the 

analytic American option valuation formula in different methods, in which they 

show that the American option value is made up of the corresponding European 

option value and an integral part representing the early exercise premium.  

However, the exact formula for optimal exercise boundary is hidden in a veil of 

mystery as yet.  

 

Kim (1990) has divided the time space into a finite number of discrete 

exercisable points in time.  Then he gains the values of the live American call 

option at the consecutive points in time from the maturity.  After finding out the 

recursive relationship between the value of the live American call option at each 

point and ignoring a negligible term in equation, he obtains the analytic solution 

for American call options that can be exercisable at discrete points in time.  By 
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taking a limit for the time interval, he finally derives the analytic solution to the 

valuation problem of American options on assets that pay continuous dividends.  

This is in accordance with the limit of the formula provided by Geske and 

Johnson (1984). 

 

Jacka (1991) provides the verification of the essential uniqueness of the 

solution to the free boundary problem and the identification of the integral 

equation satisfied by the stopping boundary.  He obtains the valuation result 

using probability theory applied to the optimal stopping problem. 

 

Carr, Jarrow and Myneni (1992) provide another proof of the American Options 

valuation formula using stochastic calculus and offer intuition on the nature of the 

early exercise premium.  In particular, they show that the early exercise premium 

is the value of an annuity that pays interest at a certain rate whenever the stock 

price is low enough so that early exercise is optimal. 

 

The purpose of this article is to provide the information on the structure of 

American option dynamics and introduce a general methodology to derive the 

analytic valuation formula of the American options using the knowledge with 

diffusion equations.  This process is sure to be much helpful to understand the 

mechanism of American options as a function of stock price and time variables.  

This methodology can be regarded as the expansion of the Black-Scholes model 

to the American options valuation. The expression will help us to gain rich 

understanding and intuition for the whole composition and dynamics of American 
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options.  And this article examines the reason why the optimal exercise boundary 

cannot but be determined in the valuation process as well. 

 

This article is organized as follows.  In section 1, we transform the American 

put option into the diffusion equation formulation.  In section 2, we examine the 

meaning of the transformed formulation in the viewpoint of both finance and 

thermal physics.  In section 3, we explain the detail of the American option 

dynamics as time goes on and derive the American options valuation formula with 

diffusion equation approach.  In section 4, we show that the valuation formula 

derived in section 3 is expanded to be applied to several other American options. 

Section 5 is a summary and conclusion. 

 

 

1. Basic Transformation of American Put Option 

 

We shall first consider an American put option written on an underlying stock 

price S at time t, with expiration time T and strike price K.  The American option 

valuation problem is to be solved in the domain D = {(S,t) | 0≤S<∞, 0≤t≤T}. 

Assume the stock price dynamics follows a lognormal diffusion process or a 

geometric Brownian motion 

 

tSdWSdtqrdS σ+−= )(  

 

where dWt is a standard Brownian motion or a Wiener process, r is the risk free 
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interest rate, σ is the volatility, and q is the continuous dividend rate which is less 

than r.  Throughout the article, T, K, r, q and σ are all taken to be constant and 

greater than or equal to 0, unless otherwise noted.  

 

Black-Scholes Partial Differential Equation for a European put option on an 

asset paying continuous dividends q with value Pe(S,t) is 
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Equations (1), (2) and (4) are also applied to the American put options case.  But 

we should consider one more condition for American put options for during the 

options’ lifetime.   

 

The characteristic of the early exercise feature of American options leads to the 

condition that American options must be worth at least their corresponding 

intrinsic values, namely, max(S-K,0) for a call and max(K-S,0) for a put during the 

life.  To represent this constraint, we should introduce a new expression to the 
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original problem instead of Equation (3) as follows, 

 

 )0,max(),(),( SKTSPtSP aa −=≥  (5)

 

where Pa(S,t) is American put option value. 

 

Moreover, the governing equation of Equation (1) is not always true for the 

American options.  We can divide the domain of the stock price and time into 

two regions, an exercise region (0<S≤Sc(t)=B(t)) where the holder of the American 

option had better exercise it and a holding region (B(t)=Sc(t)<S<∞) where the 

holder of the American option had better hold it rather than exercise it.  Here, 

Sc(t) is commonly referred to as the critical stock price at time t and B(t) is 

referred to as the optimal exercise boundary at time t.  For the exercise region, if 

we substitute Pa = K-S into Equation (1), we obtain 
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It is more convenient to work in traditional normalized coordinates with the 

stock price variable normalized by the strike price, the time variable normalized 

by the volatility and the strike price, the critical stock price variable normalized by 

the exercise price, and the American options value normalized by the exercise 

price respectively,  
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And we introduce a non-dimensional measure of the risk free interest rate and the 

dividend rate, 

 

 ,
22σ

θ r
=  (11)

 .
22σ

δφ =  (12)

 

If we substitute Equation (10) into Equation (1), with 
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then Equation (1) can be transformed into the basic heat or diffusion equation 

problem in thermal physics as follows, 

 

 02

2

=
∂
∂

−
∂
∂

x
uu

τ
. 

 

We can transform the original problem into the diffusion equation form separately 
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for the exercise region and for the holding region, to understand the structure 

more clearly. 

 

If we substitute Equations (7) – (12) into Equations (1) – (6), we gain  
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with initial and boundary conditions 
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Equation (13a) is for the exercise region and Equation (13b) is for the holding 

region.  Equations (13) – (17) are explained in the next section in more detail. 

 

 

2. The Meaning of the Transformed Model 
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The Black-Scholes Partial Differential Equation of the American options has 

minus value at the exercise region, which leads to an opportunity of arbitrage.  

We might expect that the holder of an American option will choose the exercise 

policy in such a way that the expected payoff from the option will be maximized.  

If we could buy a put option and immediately exercise the put option to sell the 

stock in the market, we could make a riskless profit by the difference. To prohibit 

this chance, we need to supplement an appropriate amount of value to the 

governing equation of the American options to make balance. The variable u(x,τ) 

expressed in Equations (13a) and (13b) can be interpreted as the American option 

value in finance and as the temperature profile in thermal physics as well.   

 

Equation (13a) has incorporated with a new term f(x,τ).  Physically speaking, 

the f(x,τ) can be interpreted as an internal dimensionless heat generation 

distribution in the domain.  As we can forecast, if the heat is generated inside a 

conductive material with initial temperature, the temperature profile becomes 

higher than that of the simple conduction or diffusion of initial temperature with 

no heat generation.  Therefore, we can say that if the supplementary amount of 

option value f(x,τ) is added up to the exercise region, it comes to diffuse to the 

both infinite side ends as τ increases and make an effect of push up the value of 

the put option all over the stock price domain.  We know already that the deep-

in-the-money value of the European put option is on a gradual decrease as τ 

increases.   So, we need to add up some amount of value to keep the American 

option value be equal to the intrinsic value of the put option at the exercise region. 

f(x,τ) is to be calculated in the next section. 
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Equation (14) is the initial condition of partial differential equation problem 

that represents the initial temperature distribution at τ=0, which corresponds to the 

terminal value of the American put option at expiration.  Equations (15) and (16) 

are boundary conditions that have been incorporated in American option valuation 

model.  If we solve the diffusion equation problem only with Equation (13b), 

(14), (15) and (16) for -∞<x<∞, this process leads us to the Black-Scholes model 

for the European put option.   

 

Equation (17) has been transformed from Equation (5).  At the exercise region, 

the European put option value decreases gradually and is getting lower than the 

intrinsic value which is identical with the right hand side terms of Equation (17).  

So, physically speaking, the amount of heat that is needed to complement the 

decreased temperature should be provided by the internal heat generation, as 

mentioned earlier.  Because the internal heat generation is needed continuously 

to make up for the loss at the exercise region, the temperature profile should be 

equal to the right hand side of Equation (17).  We can conclude that the 

following equation is satisfied at the exercise region. 

 

 
).(,)(),(

})1(
4
1{)1(

2
1)1(

2
1 2

ττ
τθφθφθφθ

bxeeexu
xx

≤<∞−⋅−=
+−−+−−−

 (18)

 

where b(τ) is the critical point at τ defined in Equation (9). 
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And, Heat or diffusion equation has two important properties: the one is the 

linearity and the other one is the uniqueness of the solution.  And these 

properties lead to the principle of superposition that the general solution of a 

linear homogeneous ordinary differential equation of order n is a linear 

combination of n linearly independent solutions with n arbitrary constants.  

These properties are of use in deriving the analytic valuation formula of the 

American options.  

 

 

3. Derivation of the American Options Valuation Formula 

 

We begin with the calculation of the amount of heat generated internally, f(x,τ), 

which implies the additional value of the American option to protect the 

opportunity of arbitrage.  The truth is that we do not need to calculate f(x,τ) at the 

exercise region, because we already know the exact temperature profile formula 

meaning the intrinsic value in Equation (18).  But, we still need to obtain f(x,τ) 

because the generated heat flows into the holding region to make an effect on the 

temperature profile that means American options value.  

 

f(x,τ) can be obtained both by physical method and by mathematical method.  

But mathematical method is much easier than the physical method.  Equation 

(18) is governed by Equation (13a) at the exercise region.  So, we can calculate 

the first derivative of Equation (18) with respective to τ and the second derivative 

of it with respective to x, and put into Equation (13a).  With an easy mathematics, 
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we can obtain 
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Thanks to the property of linearity, the solution of diffusion equation problem of 

Equations (13) – (17) can be expressed as the sum of the following two problems: 
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We can use the fact that knowing the basic Green’s function G(x-ξ, τ-ω) allows us 
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to write the solution of the first problem immediately in terms of a superposition 

integral, which is also implied by linearity. 

 

First, we shall attack the problem of Equation (20).  Laplace Transform and 

Fourier Transform can be used to get the solution to the problem represented in 

Equation (20).  But, to understand the dynamics of heat diffusion in more detail, 

we shall consider the following problem very similar to Equation (20). 

 

 

 

,0,),()(2

2

≥∞<<∞−−−=
∂
∂

−
∂
∂ τωτδξδ
τ

xx
x
uu  

(22a)

 ,0)0,( =xu  (22b)

 ,,0),( ∞≈≈ xasxu τ  (22c)

 

where ξ and ω are fixed constants, -∞< ξ <∞, 0< ω <∞ and δ denotes the Dirac 

delta function.  We may interpret Equation (22) physically as the equation 

governing the temperature in an infinite conductor that is subjected to a 

concentrated unit source of heat at the point x= ξ.  This source of heat is turned 

on only for the instant τ=ω and is absent for all other times.  And the conductor 

has a constant temperature that we normalize to equal zero, which represent the 

initial condition, Equation (22b), and boundary condition, Equation (22c). 

 

The solution of the inhomogeneous diffusion Equation (22) is the following 

Green’s function, which is a function of x= ξ and τ=ω: 
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At τ=ω, only the position of x= ξ has the temperature and others has 0. The 

initially sharply peaked profile is gradually smoothed out as τ increases under the 

action of diffusion.  These are remarkable features for diffusion phenomena. 

 

Since we get the solution of the diffusion equation with δ(x-ξ) and δ(τ-ω), 

linearity implies that the solution of the inhomogeneous diffusion Equation (20) 

due to the f(ξ,ω) is just  
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Here, f(x,τ) is defined in Equation (19).  The substitutions give 
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With some mathematical treatment, we obtain 
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where 
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N stands for the standard Gaussian cumulative distribution function. 

 

As mentioned earlier, f(x,τ) is the additional value of the American option to 

protect the opportunity of arbitrage or the amount of heat generated internally at 

the exercise region.  And the temperature is apt to get down below the u(x,τ) of 

Equation (18) at the exercise region because the heat tends to flow from high 

temperature to low temperature.  The temperature of the exercise region is 

always higher than that of the holding region.  So, the heat at the exercise region 

flows into the holding region as τ increases and this makes the temperature of the 

holding region be on a gradual increase.  Once the temperature of a point in x 

gets higher than the initial temperature, the point becomes to be classified into the 

holding region.  

 

At every time, we should determine the critical point b(τ), meaning the optimal 
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exercise boundary1.  This is the right end of the region where we should generate 

heat to complement the decreased value.  At the critical point, the temperature is 

no longer lower than the initial temperature even without heat generation.  The 

critical point plays a role of a point of inflection mathematically as well.   

 

The critical point plays a great role in option valuation theory.  Two factors 

make influence on the temperature of the holding region.  The one is the length 

of the region where heat generates internally.  And the other one is the amount of 

heat which is generated at each point of the domain internally.  The critical point 

moves left as τ increases so that the length of heat generation is on a gradual 

decrease.  And the amount of the generated heat differs as τ increases.  As these 

two factors vary, the amount of heat that flows into the holding region differs as τ 

increases.  Consequently, the temperature of the holding region affects from 

them.  And then we should adjust the critical point because the temperature of 

the holding region moves higher than ever.  This means critical point affect the 

temperature of the holding region and the temperature of the holding region affect 

the critical point recursively.  They are mutually connected very closely.  For 

this reason, it is impossible to extract only the optimal exercise boundary from the 

analytic valuation formula or to make the valuation formula with no optimal 

exercise boundary. 

 

Next, we shall deal with the problem of Equation (21).  To solve the 

                                            
1 The free boundary problem associated with the optimal stopping problem for American put 

options was studied by McKean (1965) and van Moerbeke (1976). 
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homogeneous diffusion equation (21), we note that it is equivalent to 
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As can be verified by noting that integrating the inhomogeneous diffusion 

Equation (24a) with respect to τ from τ=0- to τ=0+ gives u(x,τ)=u0(x).  Since the 

right hand side of (24a) vanishes when τ>0, Equations (21) and (24) are 

equivalent.   

 

The solution of the inhomogeneous diffusion Equation (24) is the following 

Green’s function, which is a function of x= ξ .  
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To solve (21), we set f(ξ,ω) in Equation (23) equal to δ(ω)·u0(ξ) and obtain 
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This corresponds to the Black-Scholes Model for European put option valuation. 

 

Now, it is the right time to sum up the two results, Equations (23) and (25) so 

that we can get the solution for the original diffusion equation problem of 

Equations (13) – (17),  

 

 ),(),(),( τττ xuxuxu eepbs += . 

 

If we retrace our steps back, writing 

 

 ),(),( τβτα xuKetSP x
a

+=  (11)

 

and making change of variables back with Equation (7)-(12), then we gain the 

final American put options valuation Formula as follows. 
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The first term in Equation (26) is the European put option price while the second 

term represents the early exercise premium2.  The early exercise premium has 

originally been created from the additional heat generation f(x,τ) in Equation (20a) 

and its distribution in the rage of 0<S≤Sc(t) as time passes, so the integrand 

function in the second term is always positive.   

 

Unfortunately, the solution to the integral equation of the early exercise premium 

representation cannot be explicitly know because of the interaction between the 

optimal exercise boundary and the American options value, and thus it needs to be 

solved numerically. 

 

Following the same solution processes as the American put option valuation 

formula, we can obtain the analytic valuation formula for American call option 

                                            
2 Jamshidian (1992) has interpreted the early exercise premium as the delay exercise 

compensation 
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Ca(S,t) as follows: 
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Like the American put option case, the first term in Equation (27) is the European 

call option value while the second term represents the early exercise premium.  

 

Equations (26) and (27) give us the information that the American option 

valuation formula consist of the European option valuation formula and early 

exercise premium.  So, we can conclude that the existence of the analytic 

European option valuation formula is the necessary condition for the existence of 

the analytic American option valuation formula.  If we confirm the valuation 

formula for a European-style option contract is such a shape as Black-Scholes 

model, we can easily obtain the analytic American option valuation formula for 

the contract with Equations (26) and (27).  Some examples are given in the next 

section.  Even if the option contract is far from the shape of plain vanilla option 

such as exotic options, we can obtain the analytic American option valuation 

formula by following the whole solution process explained in section 3. 

 

With Equations (26) and (27) we can confirm that the decision of early exercise 

depends on the competition between the time value of the strike price K and the 

loss of insurance value associated with the holding of the option. The early 
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exercise of an American put on a non-dividend paying asset may become 

preferable when the gain in the time value of K – receiving amount of cash K now 

rather than at the time of expiration – exceeds the insurance value of the put. [Kim 

(1990), Carr, Jarrow and Myneni (1992)] 

 

 

4. Application of the Analytic American option valuation formula 

 

We shall deal with the problem of valuing American options on stock index, 

foreign currency, futures and exchange contracts in this section3.  

 

Under the condition that we assume the same stochastic process for stock, stock 

index, foreign currency and futures, it is well known that the options on stock 

index, foreign currency, and futures are very similar with stock paying continuous 

dividends.  This means they have very similar partial differential equation one 

another.  It is also known that the dividend yields (qi) in stock index option, the 

foreign currency risk-free interest rate (rf) in currency option, risk-free interest 

rate (r) in futures options act like the dividend yields (q) in the option on stock 

paying continuous dividend for the European style option.  We can conclude that 

the American option valuation formula on them is analogous to Equation (26) for 

put option case and Equation (27) for call option case because of the necessary 

condition between them. 
                                            
3 Most traded stock and futures options are American style, but most index options are European 

style. 
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Let Pa(S,K,r,q,σ,t,T) denote the value of the American put option, Pa(S,t) of 

Equation (26) and Ca(S,K,r,q,σ,t,T) denote the value of the American call option, 

Ca(S,t) of Equation (27), where all parameters are included. 

 

For the stock index options, we obtain the value, Pa, of the American put and 

the value, Ca, of the American call options by replacing q with qi and S with I 

meaning of stock index in the American option valuation formula as  

 

 ),,,,,,( TtqrKIPP iaa σ=  

 ),,,,,,( TtqrKICC iaa σ= . 

 

For the foreign currency options, by replacing q with rf and S with E meaning 

of the foreign currency exchange rate in the American option valuation formula, 

we obtain the put and the call valuation formula as 

 

 ),,,,,,( TtrrKEPP faa σ=  

 ),,,,,,( TtrrKECC faa σ= . 

 

The identical process is applied for the futures options case.  We obtain the 

value, Pa, of the American put and the value, Ca, of the American call options by 

replacing q with r and S with F meaning of futures price in the American option 

valuation formula as  
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 ),,,,,,( TtrrKFPP aa σ=  

 ),,,,,,( TtrrKFCC aa σ= . 

 

This is in accordance with the valuation model for the American futures options of 

Kim (1994). 

 

Lastly, the American option valuation formula can be extended to the valuation 

of the American options to exchange one asset S2 for another S1, whose payoff at 

expiration is 

 

 )0,max( 2211 SaSa −  

 

where a1 and a2 are the constant quantity of asset S1 and S2 which pay continuous 

dividend at rate q1 and q2 and has the volatility of σ1 and σ2 respectively. 

 

Margrabe (1978) developed the pricing equation for a European Exchange 

option.  Because the necessary condition between European and American 

option valuation formula, we can easily extend the equation into the analytic 

American Exchange option valuation formula as  

 

 ),,ˆ,,,,( 212211 TtqqSaSaCC aa σ=  

where  
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Here, ρ is the correlation between the two assets.  This is in accordance with the 

concept of Bjerksund and Stensland (1993). 

 

 

4. Summary and Conclusion 

 

This article presents a general methodology to derive the analytic valuation 

formula for the American option.  We consider American options in the frame of 

diffusion equation like Black-Scholes model.  Undergoing the derivation process, 

we can understand the basic structure and dynamics of the American options 

including the corresponding European options and figure out the close correlation 

between optimal exercise boundary and American option valuation.  This article 

concludes that optimal exercise boundary and the American valuation formula are 

so mutually connected that we cannot extract only one of them independently of 

the other.  

 

We can obtain the analytic American option valuation formula easily if the 

contract is similar to plain vanilla option like options on stock indices, currency, 

futures and exchange one asset for another.  Even if the option contract is far 

from the shape of plain vanilla option such as exotic options and corporate 

securities, we can obtain the analytic American option valuation formula by using 
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the general methodology developed in this article. 
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