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1. Introduction

     One of the remarkable features of the 

mathematical description by means of partial 

differential equations is the comparative ease 

with which solutions can be obtained for 

certain geometrical shapes, such as circles 

and infinite strips, by the method of 

separation of variables. In contrast, 

considerable difficulty is usually encountered 

in finding solutions for shapes not covered by 

the method of separation of variables.

     Scattering by rigid screen like this 

problem can be described by partial 

differential equation having mixed boundary 

conditions. Mixed boundary conditions mean 

that some parts of the boundary of the region 

are prescribed by function itself and the rests 

of the boundary of the region are prescribed 

by the normal derivative of the function. In 

other words, mixed boundary value problem 

is a partial differential equation having both 

the Dirichlet and Neumann boundary 

conditions. Many methods are available for 

mixed boundary value problem. The method 

used in this thesis is Wiener-Hopf technique 

using the property of analytic continuation in 

complex domain.

     But, when we solve the wave equation 

for the scattered potential, unlike the case of 

diffraction by semi-infinite geometry, 

mathematical difficulties arises due to the 

finite geometry such as a blade. The 

finiteness of geometry in our problem brings 

a serious mathematical difficulty which is the 

appearance of simultaneous integral equations 

resulted from the three-part mixed boundary 

value problem. There has been no general 

method for the simultaneous integral 

equations having multi-valued kernel function 

because two integral equations are strongly 

coupled. So, this study provides a formulation 

of independent integral equations by 

decoupling the simultaneous equations. The 

brief procedure is explained in the following 

chapter.

2. Formulation

2.1 Governing equation

     Consider a blade of finite length 

submerged in subsonic uniform flow, as 

illustrated in Figure 1. It is assumed that the 

blade is infinitesimally thin and the mean 

flow is parallel to the blade surface with 

velocity U in the x-direction. There are 

steady-state waves with time factor 
iwte-
 

incoming on and these cause velocity 

perturbation to the mean flow. Denote the 

total velocity potential by the summation of 

the incident and the scattered potential.
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 The governing equation will be setup for the 

scattered potential and this is convective 

wave equation from the linearized Euler 

equations. Two-dimensional convective wave 

equation is written as below and the 

scattered potential has the time factor, 
iwte-
, 

which is the same as the factor of incident 

wave
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 Now the equation is rewritten with the 

definition of wave number and Mach Number.  
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 Here, k is assumed to have a positive 

imaginary part 2k , that is, 21 ikkk +=  for the 

use of Wiener-Hopf technique. We will work 

with finite 2k  and after obtaining the solution 
it is set to be zero.

2.2 Boundary conditions

     The flow normal to the blade will be 

zero and so the incident velocity perturbation 

will induce a scattered field which must 

satisfy the boundary condition which can be 

stated that the normal derivative of the total 

potential on the blade surface is zero. Also 

the normal derivative of the total potential 

and therefore of the scattered potential will be 

continuous everywhere on y=0. But potential 

itself is continuous except for the region of 

the blade. In addition to these condition, it is 

worthy to consider the behavior of the 

scattered potential at infinity.

 Boundary conditions are specified as follow:

(i) 0/ =¶¶ ytf   on 0=y , qxp ££  so that

qqf cossin/ ikxeiky -=¶¶  on 0=y , qxp ££   

(ii) yt ¶¶ /f  and therefore y¶¶ /f  are 

continuous on 0=y , ¥££¥- x  

(iii) tf  and therefore f  are continuous on 

0=y , px ££¥-  and ¥££ xq  

(iv) For any fixed y, 0³y  or  0£y
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 2.3 Transformed potential

     Now we introduce the Fourier transform 

of potential.
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 From the boundary condition (iv), for a 

given y, 
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constants. Therefore and )(x+F  is analytic 

for M
k
+

->
1

)Im( 2x
 and )(x-F  is analytic for  

M
k
-

<
1

)Im( 2x
. Therefore )(xF  is analytic in 

the strip M
k

M
k

-
<<

+
-

1
)Im(

1
22 x
. 



2.4 Transformed equation and its solution

     If now we apply a Fourier transform in 

x to Eq.(1) we find that
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 But there are two forms of solution since f 
and  hence F is discontinuous across y=0.
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 The real part of )(xg  is always positive 

when the imaginary part of x is in 
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0)()( 12 == xx BA . This states that potential at 

infinity is physically reasonable, i.e., 

non-diverging. Then 
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 From the boundary condition (ii), yΦ/¶¶  is 

continuous across y=0.

 Then )()()()( 21 xxgxxg BA =- , i.e., we can set 

)()()( 21 xxx ABA =-= . Hence, the solution can 

be written as
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 The function A is an arbitrary function 

determined from the boundary condition on 

y=0. When a transform is discontinuous 

across y=0 we extend the notation:

)0,()0,( ±F=±F - xx xpi
l e , )0,()0,( ±F=±F + xx xqi

r e

where in the usual way 0±  means the limit 

as y tends to zero approached from positive 

and negative values of y respectively. Using 

the boundary condition (iii)

)0,()0,()0,( xxx lll F=-F=+F  

)0,()0,()0,( xxx rrr F=-F=+F

 We also write for the transformed potential 

of y¶¶ /f .

)0,()0,( '' ±F=±F - xx xpi
l e , )0,()0,( '' ±F=±F + xx xqi

r e

 Now from the boundary condition (ii), 
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)0,()0,()0,( ''' xxx +++ F=-F=+F
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2.5 Relation between transformed solution and 

transformed potential

     Matching the expressions in the previous 

section with Eq.(2), we find

(a) Potential on y=0+

)()0,()0,()0,( xxxx xx Aee qi
c

pi =F++F+F +-

(b) Potential on y=0-

)()0,()0,()0,( xxxx xx Aee qi
c

pi -=F+-F+F +-

(c) Normal derivative of potential on y=0

)()()0,()0,()0,( ''' xxgxxx xx Aee qi
c

pi -=F++F+F +-



2.6 Construction of integral equations 

     After using the Wiener-Hopf technique, 

two integral equations are obtained.

(Detail mathematical procedure is in [1] )
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     If we use these equations directly, we 

come to get strongly coupled integral 

equations which are abstruse to treat. 

Therefore, in the next section, it is shown 

that these two coupled equations are divided 

into two single integral equations.

2.7 Single integral equations

     Through some mathematical procedures, 

new integral equation is obtained.

(Detail mathematical procedure is in [1] )
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3. Conclusion

     Strongly coupled integral equations are 

converted to two independent integral 

equations for the evaluation and analysis of 

scattering by a discontinuous surface of finite 

length.
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