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A NEUMANN–DIRICHLET PRECONDITIONER FOR A FETI-DP
FORMULATION OF THE TWO-DIMENSIONAL STOKES PROBLEM

WITH MORTAR METHODS∗

HYEA HYUN KIM† AND CHANG-OCK LEE†

Abstract. A FETI-DP (dual-primal finite element tearing and interconnecting) formulation for
the two-dimensional Stokes problem with mortar methods is considered. Separate sets of unknowns
are used for velocity on interfaces, and the mortar constraints are enforced on the velocity unknowns
by Lagrange multipliers. Average constraints on edges are further introduced as primal constraints
to solve the Stokes problem correctly and to obtain a scalable FETI-DP algorithm. A Neumann–
Dirichlet preconditioner is shown to give a condition number bound, C maxi=1,...,N{(1 + log (Hi/hi))

2},
where Hi and hi are the subdomain size and the mesh size, respectively, and the constant C is in-
dependent of the mesh parameters Hi and hi.
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1. Introduction. In this paper, an iterative substructuring method with La-
grange multipliers is studied for the two-dimensional Stokes problem with noncon-
forming discretizations. Nonconforming discretizations are important for multiphysics
simulations, contact-impact problems, the generation of meshes and partitions aligned
with jumps in diffusion coefficients, hp-adaptive methods, and special discretiza-
tions in the neighborhood of singularities. Of the many methods for nonconform-
ing discretizations, including Galerkin methods [7], we consider the mortar methods
[1, 3, 20, 21] originally introduced by Bernardi, Maday, and Patera.

Dual-primal FETI (FETI-DP) methods were introduced in [11] as a generaliza-
tion of the FETI (finite element tearing and interconnecting) method [12]. Continuity
of solutions at subdomain corners is enforced by primal variables to improve the con-
vergence as well as to make local problems nonsingular. Later Mandel and Tezaur [17]

proved that these algorithms give the condition number bound, C (1 + log (H/h))
2
,

for both second- and fourth-order elliptic problems in two dimensions. Here, H and h
denote the subdomain size and mesh size, respectively. For three-dimensional elliptic
problems with heterogeneous coefficients, Klawonn, Widlund, and Dryja [14] intro-
duced averages over individual edges and/or faces as primal constraints to obtain a
method as scalable as in two dimensions. Later FETI-DP algorithms were extended
to the Stokes problem in both two and three dimensions by Li [15, 16]. Edge and/or
face average constraints as well as vertex constraints are selected as a set of primal
constraints to enhance the convergence of the FETI-DP algorithms.

Recently, FETI-DP methods have been applied to nonconforming discretiza-
tions [8, 9, 10, 13, 18]. For elliptic problems in two dimensions, Dryja and Wid-
lund [9, 10] proposed several preconditioners and showed the condition number bound
C(1+ log(H/h))2. However, the constant C depends on the ratio of mesh sizes across
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interfaces. Later, the current authors [13] proposed a Neumann–Dirichlet precondi-
tioner, which gives the same condition number bound without the dependence of C
upon the ratio of mesh sizes. The proposed preconditioner is similar to the previous
FETI-DP preconditioners except that it solves local problems with Neumann bound-
ary conditions on nonmortar interfaces and with a zero Dirichlet boundary condition
on mortar interfaces.

The purpose of this paper is to extend the FETI-DP algorithm developed in
[13] to the two-dimensional Stokes problem with mortar discretizations. The inf-
sup stable P1(h)-P0(2h) finite element space is considered in each subdomain. The
triangulations are nonmatching across subdomain interfaces. To achieve the optimal
approximation, we impose mortar matching conditions on the velocity functions. An
optimal approximation of mortar methods for the Stokes problem was proved by
Belgacem [2]. The inf-sup constant of the mortar finite element space is important
in the analysis. If the constant is independent of mesh size and subdomain size, then
the optimal order of approximation follows independent of the number of subdomains
and mesh size, as in the case of elliptic problems. In [2], it was shown that the inf-
sup constant is independent of mesh size for the Hood–Taylor finite element space,
but this was not shown for the subdomain size. For the P1(h)-P0(2h) mortar finite
element space, we compute the inf-sup constant numerically by increasing the number
of subdomains and decreasing mesh sizes, and we observe that the constant seems to
be independent of these parameters.

We follow the FETI-DP formulation developed in [15]. The fundamental idea
of the present paper is the same as one of [15], with additional technical complica-
tions caused by nonmatching grids across subdomain interfaces. Mortar matching
constraints will be enforced on velocity unknowns across interfaces instead of point-
wise matching constraints in conforming discretization. We introduce the primal
constraints, i.e., edge average and vertex constraints, to solve the Stokes problem
efficiently and correctly. We then propose a Neumann–Dirichlet preconditioner and
analyze the condition number bound. The preconditioner consists of local Stokes
problems with Neumann boundary conditions on nonmortar edges and a zero Dirichlet
boundary condition on the remaining part of the subdomain boundary. The additional
complication caused by mortar discretizations can be handled by using this precon-

ditioner. In the analysis, the stability of the mortar projection in the H
1/2
00 -norm is

used. Our theory can be extended to Lagrange multiplier spaces with this property.
Several such Lagrange multiplier spaces have been developed by Wohlmuth [20, 21].

This paper is organized as follows. Section 2 contains a brief introduction to
Sobolev spaces and finite elements. In section 3, we derive a FETI-DP formulation of
the Stokes problem. Section 4 is devoted to analyzing the condition number bound.
Numerical results are included in section 5. Throughout this paper, C denotes a
generic constant independent of mesh sizes and subdomain sizes. We will use Hi and
hi to denote the subdomain size and the typical mesh size of each subdomain Ωi,
respectively.

2. Sobolev spaces and finite elements.

2.1. A model problem. Let Ω be a bounded polygonal domain in R
2, and let

L2(Ω) be the space of square integrable functions defined in Ω equipped with the
norm

‖v‖2
0,Ω :=

∫
Ω

v2 dx.
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The space L2
0(Ω) contains functions in L2(Ω) with zero average

∫
Ω
v dx = 0. The space

H1(Ω) consists of functions that are square integrable up to the first weak derivatives
with the norm

‖v‖2
1,Ω :=

∫
∇v · ∇v dx +

∫
v2 dx.

The space H1
0 (Ω) is a subspace of H1(Ω) with functions having zero trace on the

boundary of Ω.
In this paper, we consider the following Stokes problem: For f ∈ [L2(Ω)]2, find

(u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω) satisfying

−�u + ∇p = f in Ω,

−∇ · u = 0 in Ω,

u = 0 on ∂Ω.

(2.1)

We then partition Ω into nonoverlapping subdomains {Ωi}Ni=1, which are geometrically
conforming; a subdomain intersects its neighbors on a whole edge or at a vertex. For
each subdomain, we introduce the space H1

D(Ωi) to be a subspace of H1(Ωi) with zero
trace on ∂Ωi ∩ ∂Ω, the space L2

0(Ωi) to be a subspace of L2(Ωi) with zero average,
and the space Π0, which consists of functions that are constant in each subdomain
and have zero average in Ω:

H1
D(Ωi) :=

{
v ∈ H1(Ωi) : v = 0 on ∂Ωi ∩ ∂Ω

}
,

L2
0(Ωi) :=

{
q ∈ L2(Ωi) :

∫
Ωi

q dx = 0

}
,(2.2)

Π0 :=

{
q0 : q0|Ωi is constant and

∫
Ω

q0 dx = 0

}
.

The problem (2.1) is then written into an equivalent variational form: Find (u, pI , p0) ∈∏N
i=1

[
H1

D(Ωi)
]2 ×∏N

i=1 L
2
0(Ωi) × Π0 such that

N∑
i=1

(∇u,∇v)Ωi −
N∑
i=1

(pI + p0,∇ · v)Ωi =

N∑
i=1

(f ,v)Ωi ∀ v ∈
N∏
i=1

[
H1

D(Ωi)
]2

,

−
N∑
i=1

(∇ · u, qI)Ωi
= 0 ∀ qI ∈

N∏
i=1

L2
0(Ωi),

−
N∑
i=1

(∇ · u, q0)Ωi = 0 ∀ q0 ∈ Π0,

u|Ωi − u|Ωj = 0 ∀Γij = ∂Ωi ∩ ∂Ωj .

(2.3)

Here (·, ·)Ωi denotes the inner product in [L2(Ωi)]
n for n = 1, 2. We now introduce

a finite element space to approximate the above problem. Triangulations Ω2hi
i and

Ωhi
i for pressure and velocity, respectively, are given in each subdomain. The finer

triangulation Ωhi
i is obtained from Ω2hi

i by connecting midpoints of edges in the

triangle τ ∈ Ω2hi
i so that τ is divided into four triangles. We assume that these

triangulations are quasi-uniform and may not match across subdomain interfaces.
The finite element space P1(hi)−P0(2hi) is then associated with each subdomain Ωi;
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we denote by Xi the space of conforming linear finite elements on the triangulation
Ωhi

i and by Qi the space of functions constant on each triangles in Ω2hi
i with zero

average over Ωi:

Xi:=
{
vi ∈

[
H1

D(Ωi) ∩ C(Ωi)
]2

: vi|τ is piecewise linear ∀ τ ∈ Ωhi
i

}
,

Qi:=
{
qi ∈ L2

0(Ωi) : qi|τ is constant ∀ τ ∈ Ω2hi
i

}
.

The inf-sup stability of the space P1(hi)− P0(2hi) can be shown from the macro
element technique in [19] or from the inf-sup stability of the space P2(2hi)−P0(2hi) in
[6]. The space P2(2hi)−P0(2hi) consists of piecewise quadratic functions for velocity
and piecewise constant functions for pressure in the same triangulation Ω2hi

i . In the
proof of the stability of P1(hi)−P0(2hi), we may regard P2(2hi)−P0(2hi) as identical
to P1(hi) − P0(2hi).

Our FETI-DP formulation will be described using the space X, an approximate
space for velocity, which can be discontinuous across the interfaces except corners; the
space QI for pressure, which has zero average in each subdomain; and the space W
for velocity on the interfaces, which is continuous at corners and can be discontinuous
on the remaining part:

X :=

{
v ∈

N∏
i=1

Xi : v is continuous at subdomain corners

}
,

QI :=

N∏
i=1

Qi,

Wi := Xi|∂Ωi
for i = 1, . . . , N,

W :=

{
w ∈

N∏
i=1

Wi : w is continuous at subdomain corners

}
.

(2.4)

Throughout this paper, we will use the same notation for a finite element function
and the nodal unknowns of the function. For example, vi can be used to denote a
finite element function or the corresponding nodal unknowns. The same holds for the
notations Wi, X, W , etc.

We now introduce Sobolev spaces on the subdomain boundaries. The space
H1/2(∂Ωi) is the trace space of H1(Ωi) normed by

‖wi‖2
1/2,∂Ωi

:= |wi|21/2,∂Ωi
+

1

Hi
‖wi‖2

0,∂Ωi
,

where

|wi|21/2,∂Ωi
:=

∫
∂Ωi

∫
∂Ωi

|wi(x) − wi(y)|2
|x− y|2 ds(x) ds(y).

For any Γij ⊂ ∂Ωi, the space H
1/2
00 (Γij) is a set of functions in L2(Γij) of which zero

extension to ∂Ωi is contained in H1/2(∂Ωi), and it is equipped with the norm

‖v‖2

H
1/2
00 (Γij)

:= |v|2H1/2(Γij)
+

∫
Γij

v(x)2

dist(x, ∂Γij)
ds.
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From section 4.1 in [22], the following relation holds for v ∈ H
1/2
00 (Γij):

C1‖ṽ‖1/2,∂Ωi
≤ ‖v‖

H
1/2
00 (Γij)

≤ C2‖ṽ‖1/2,∂Ωi
,(2.5)

where ṽ is the zero extension of v to ∂Ωi. The inequalities in (2.5) also hold for the

product spaces [H1/2(∂Ωi)]
2 and [H

1/2
00 (Γij)]

2 equipped with product norms.

2.2. Mortar methods. We consider the space X for velocity and the space
P = QI × Π0 for pressure to approximate the Stokes problem (2.3); see (2.4) and
(2.2) for the definitions of X, QI , and Π0. We will impose the mortar matching
condition on the velocity functions. On the interface Γij = ∂Ωi ∩ ∂Ωj , two different
triangulations are given by the triangulations in Ωi and Ωj . We distinguish them by
choosing one as a mortar side and the other as a nonmortar side. On each subdomain
Ωi, we define

mi := {j : Ωj is the mortar side of Γij ∀Γij ⊂ ∂Ωi} ,

which is a set of subdomain indices j such that Ωj intersects Ωi on the interface Γij ,
where Ωj is chosen as the mortar side and Ωi is chosen as the nonmortar side.

On each interface Γij , we consider a trace space

Xn(ij)|Γij
,(2.6)

where Xn(ij) is the finite element space on the nonmortar side of Γij ; i.e., n(ij) = i if
Ωi is the nonmortar side of Γij . The standard Lagrange multiplier space introduced
in [3] is then given by

Mij := {ψ ∈ Xn(ij)|Γij : ψ|τ is constant on τ which intersects ∂Γij}.

Here τ is the restriction of a triangle in the triangulation Ω
hn(ij)

n(ij) to the interface Γij .

We then take the Lagrange multiplier space

M :=

N∏
i=1

∏
j∈mi

Mij .(2.7)

The mortar matching condition on v = (v1, . . . ,vN ) ∈ X is∫
Γij

(vi − vj) · λij ds = 0 ∀λij ∈ Mij , ∀ i = 1, . . . , N, ∀j ∈ mi.(2.8)

The mortar finite element space of velocity is then given by

V := {v ∈ X : v satisfies the mortar matching condition (2.8)} .(2.9)

It was shown in [2] that the best approximation property holds for the space V × P ,
given by the Hood–Taylor finite element space for each subdomain, if it satisfies the
inf-sup condition

inf
q∈P

sup
v∈V

∫
Ω
∇ · v q dx

‖v‖∗1,Ω‖q‖0,Ω
≥ β,
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where the constant β is independent of the mesh size and the subdomain size. Here
‖v‖∗1,Ω denotes the broken H1-norm

‖v‖∗1,Ω =

(
N∑
i=1

‖v‖2
1,Ωi

)1/2

.

To our best knowledge, there is no mathematical proof that shows that the constant
β is independent of the subdomain size. We compute the inf-sup constant numerically
and observe that the constant is independent of the subdomain size as well as the mesh
size; see section 5. Therefore we can get a solution as accurate as that in conforming
approximations.

3. FETI-DP formulation.

3.1. Notation. We will introduce several notations which will be used in the
FETI-DP formulation. We recall Xi, the velocity finite element space in Ωi; Wi,
the trace space of Xi on ∂Ωi; and X, a subspace of the product space of Xi with
functions that are continuous at subdomain corners. The space W is similarly defined
as a subspace of the product space of Wi. The definitions of these spaces are given in
(2.4).

The unknowns vi ∈ Xi and wi ∈ Wi are ordered into

vi =

⎛⎝vi
I

vi
r

vi
c

⎞⎠ , wi =

(
wi

r

wi
c

)
,

where the subscripts I, r, and c represent the d.o.f. (degrees of freedom) corresponding
to the interior, edges, and corners, respectively. We define the following spaces based
on the splitting of unknowns: XI , the space of velocity unknowns at the interior of
each subdomain; Wr, the space of velocity unknowns at the interior of both mortar
and nonmortar edges; Wc, the space of velocity unknowns at global corners; and W i

c ,
the space of velocity unknowns at subdomain corners:

XI =
{
vI : vI |Ωi

= vi
I , ∀i = 1, . . . , N

}
,

Wr =
{
wr : wr|∂Ωi

= wi
r, ∀i = 1, . . . , N

}
,

Wc = {wc : wc are velocity unknowns at global corners} ,
W i

c =
{
wi

c : wi
c are velocity unknowns at corners in Ωi

}
.

(3.1)

We further define the restriction map

Li
c : Wc → W i

c

that gives

Li
cwc = wi

c ∀i = 1, . . . , N, for wc ∈ Wc.

We will now express the mortar matching condition (2.8) as a matrix form

Bw = 0,(3.2)

where

B =
(
B1 · · · BN

)
,

w =
(
wt

1 · · · wt
N

)t
, wi = vi|∂Ωi

.
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Since w is continuous at global corners, the above equation can be written as a
different form with unknowns wr ∈ Wr and wc ∈ Wc:

Brwr + Bcwc = 0,(3.3)

where Br and Bc are assembled by local matrices Bi,r and Bi,c,

Br =
(
B1,r · · · BN,r

)
, Bc =

N∑
i=1

Bi,cL
i
c.

These matrices Bi,r and Bi,c consist of the columns of Bi corresponding to the un-
knowns on edges and corners, respectively. We will use any of these two expres-
sions (3.2) and (3.3) from place to place for the sake of convenience.

3.2. FETI-DP formulation with primal constraints. In this section, we
formulate a FETI-DP operator with the mortar constraints (3.3). To solve the Stokes
problem efficiently, we will consider the following primal constraints:∫

Γij

(vi − vj) ds = 0 ∀i = 1, . . . , N, ∀j ∈ mi.(3.4)

Note that (3.4) holds by replacing λij = ( 1
0 ) or ( 0

1 ) in (2.8), because constant mul-
tipliers belong to the Lagrange multiplier space Mij . These constraints are average
matching conditions of each velocity component on subdomain interfaces. These pri-
mal constraints were introduced by Li [15, 16] to the Stokes problem with conforming
discretization. The primal constraints enlarge the size of the coarse problem so that
it may lead to a fast convergence of the FETI-DP iteration.

We write (3.4) as

Rt(Brwr + Bcwc) = 0,(3.5)

where the matrix R is a Boolean matrix that has the number of columns equal to
twice the number of interfaces Γij , and the number of rows equal to the d.o.f. of the
space M . For λ ∈ M , at each interior nodal point of Γij , λ|Γij has two components
corresponding to horizontal and vertical parts of velocity function, and Rtλ = 0
means that sums of each λ|Γij

corresponding to the horizontal and vertical parts of
velocity function are zero.

Let U be the Lagrange multiplier space corresponding to the constraints (3.5);
for μ ∈ U , μ|Γij has two components that correspond to the constraints for each
horizontal velocity and vertical velocity on the interface Γij . By introducing Lagrange
multipliers λ and μ to enforce the constraints (3.3) and (3.5), we have the following
mixed formulation of the problem (2.3): Find (uI , pI ,ur,uc, p0,μ,λ) ∈ XI × QI ×
Wr ×Wc × Π0 × U ×M such that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

AII GII AIr AIc GI0 0 0
Gt

II 0 Gt
rI Gt

cI 0 0 0
ArI GrI Arr Arc Gr0 Bt

rR Bt
r

AcI GcI Acr Acc Gc0 Bt
cR Bt

c

Gt
I0 0 Gt

r0 Gt
c0 0 0 0

0 0 RtBr RtBc 0 0 0
0 0 Br Bc 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uI

pI
ur

uc

p0

μ
λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

fI
0
fr
fc
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(3.6)



1140 HYEA HYUN KIM AND CHANG-OCK LEE

Here ⎛⎝AII AIr AIc

ArI Arr Arc

AcI Acr Acc

⎞⎠ is a stiffness matrix given by

N∑
i=1

(∇u,∇v)Ωi ,

(
Gt

II Gt
rI Gt

cI

)
is a matrix given by

N∑
i=1

(−∇ · v, pI)Ωi
,

(
Gt

I0 Gt
r0 Gt

c0

)
is a matrix given by

N∑
i=1

(−∇ · v, p0)Ωi .

The velocity spaces XI , Wr, and Wc are defined in (3.1). For the definitions of spaces
QI , Π0, and M , see (2.4), (2.2), and (2.7), respectively. Since p0|Ωi is constant and
vI |∂Ωi = 0 for vI ∈ XI , the divergence theorem gives GI0 = 0.

Let

zr =

⎛⎝uI

pI
ur

⎞⎠ , zc =

⎛⎝uc

p0

μ

⎞⎠ .

We regard zc as a primal variable in the FETI-DP formulation and then write (3.6)
into ⎛⎜⎝Krr Krc B̃t

r

Kt
rc Kcc B̃t

c

B̃r B̃c 0

⎞⎟⎠
⎛⎝zr

zc
λ

⎞⎠ =

⎛⎝f̃r
f̃c
0

⎞⎠ .

In section 4, we will show that the matrix Krr is invertible; see Lemma 4.1. After
eliminating zr, we obtain the following equation for zc and λ:(

−Fcc Fcl

F t
cl Fll

)(
zc
λ

)
=

(
−dc

dl

)
,

where

Fll = B̃rK
−1
rr B̃t

r,

Fcl = Kt
rcK

−1
rr B̃t

r − B̃t
c,

Fcc = Kcc −Kt
rcK

−1
rr Krc,

dl = B̃rK
−1
rr f̃r,

dc = f̃c −Kt
rcK

−1
rr f̃r.

The matrix Fcc, a coarse problem in the FETI-DP formulation, is invertible; see
Lemma 4.2. By eliminating zc, we then obtain the following equation for λ:

FDPλ = dl − F t
clF

−1
cc dc,(3.7)

where

FDP = Fll + F t
clF

−1
cc Fcl.
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Since the primal constraints (3.4) are selected from the mortar matching condition,
the solution λ is not uniquely determined in the space M . We define a subspace

M̃ =
{
λ ∈ M : Rtλ = 0

}
,(3.8)

where the matrix R is given in (3.5). The matrix FDP is symmetric and positive

definite on M̃ ; see Remark 4.3. Hence the solution λ of (3.7) is uniquely determined

in M̃ .

3.3. Preconditioner. We will define several norms of the finite element function
spaces given on the interfaces and propose a preconditioner for the operator FDP .

First, we define a norm for the velocity space W on the interfaces. For wi ∈ Wi,
we define Siwi by⎛⎜⎜⎝

Ai
II Gi

II Ai
Ir Ai

Ic

(Gi
II)

t 0 (Gi
rI)

t (Gi
cI)

t

Ai
rI Gi

rI Ai
rr Ai

rc

Ai
cI Gi

cI Ai
cr Ai

cc

⎞⎟⎟⎠
⎛⎜⎜⎝

ui
I

piI
wi

r

wi
c

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0

Si

(
wi

r

wi
c

)
⎞⎟⎟⎠ ,

where the superscript i for a matrix denotes the submatrix corresponding to the
subdomain Ωi. Since the upper left 2 × 2 matrix(

Ai
II Gi

II

(Gi
II)

t 0

)
represents the local Stokes problem with a Dirichlet boundary condition, it is invertible
so that the Schur complement Si is well defined. We then assemble local Schur
complement matrices and define

S := diag(S1, . . . , SN ).

It can be seen easily that S is symmetric and positive definite on W .
We now introduce finite element spaces given on the nonmortar interfaces:

Wij :=
{
wij ∈ Xn(ij)|Γij

: wij vanishes at the end points of Γij

}
,

Wn :=

N∏
i=1

∏
j∈mi

Wij .

Here n(ij) denotes the nonmortar subdomain of the interface Γij . We define by
E(wn) the zero extension of the function wn ∈ Wn to the all interfaces, i.e., mortar
and nonmortar interfaces. We further define the following subspaces of W and Wn

that satisfy a certain set of constraints:

W̃ :=

{
w ∈ W :

∫
Γij

(wi − wj) ds = 0, ∀ Γij

}
,

˜̃
W :=

{
w ∈ W̃ :

∫
∂Ωi

wi · ni = 0, ∀i
}
,

W̃n :=

{
wn ∈ Wn :

∫
Γij

w ds = 0, ∀ Γij

}
,

(3.9)

where ni denotes the outward unit normal vector on the subdomain boundary ∂Ωi.



1142 HYEA HYUN KIM AND CHANG-OCK LEE

We now introduce the Neumann–Dirichlet preconditioner F̂−1
DP given by

〈F̂DPλ,λ〉 = max
wn∈W̃n\{0}

〈BE(wn),λ〉2
〈SE(wn), E(wn)〉 .(3.10)

In the following, we will provide an explicit form of F̂−1
DP in detail. We define the

l2-orthogonal projections P and Pn by

P : M → M̃, Pn : Wn → W̃n.

Since the constraints on the spaces M̃ and W̃n are given locally on each nonmortar
interface, these projections are composed of diagonal blocks of projections defined on
each nonmortar interface,

P = diagi=1,...,N

(
diagj∈mi

(
P ij

))
, Pn = diagi=1,...,N

(
diagj∈mi

(
P ij
n

))
,(3.11)

where P ij and P ij
n are l2-orthogonal projections given by

P ij : M |Γij
→ M̃ |Γij , P ij

n : Wn|Γij → W̃n|Γij
.

We define the restriction Rij and the extension Ei
ij by

Rij : Wn → Wij , Ei
ij : Wij → Wi,

and then express the zero extension E(wn) = (w1, . . . ,wN ) as

wi = Eiwn with Ei =
∑
j∈mi

Ei
ijRij .(3.12)

Using this notation, the formula (3.10) is written as

〈F̂DPλ,λ〉 = max
wn∈W̃n\{0}

〈B̂wn,λ〉2

〈Ŝwn,wn〉
,(3.13)

where

Ŝ =
N∑
i=1

Et
iSiEi, B̂ = diagNi=1 (diagj∈mi (Bij)) .(3.14)

Here the matrix Bij is a block of Bi corresponding to the unknowns of the nonmortar
interface Γij ⊂ ∂Ωi. It is easy to check that

B̂ : W̃n → M̃

is one-to-one for dim(W̃n) = dim(M̃) and B̂(W̃n) ⊂ M̃ , and that Ŝ is symmetric and

positive definite on W̃n; see (3.8) and (3.9). Let

B̂p = P tB̂Pn, Ŝp = P t
nŜPn.(3.15)

These operators are invertible, and their inverses are denoted by B̂−1
p and Ŝ−1

p , re-

spectively. The maximum in (3.13) occurs when wn ∈ W̃n satisfies Ŝpwn = B̂t
pλ, and

it gives

〈F̂DPλ,λ〉 = 〈B̂pŜ
−1
p B̂t

pλ,λ〉.
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Since B̂p is block diagonal, B̂−1
p can be written as

B̂−1
p = diagNi=1

(
diagj∈mi

(
(Bij

p )−1
))

, Bij
p = (P ij)tBijP

ij
n .(3.16)

By using the expressions in (3.11), (3.12), and (3.14)–(3.16), we obtain

F̂−1
DP = (B̂t

p)
−1ŜpB̂

−1
p =

N∑
i=1

Bt
i,nSiBi,n,

where Bi,n is given by

Bi,n =

(
diagj∈mi

(
P ij
n (Bij

p )−1
)

0

)
Ri.

Here Ri : M → Πj∈mi
Mij is the restriction, and the zero submatrix corresponds

to the unknowns of the mortar edges and corners that belong to Ωi. The matrix
Bi,n provides each subdomain problem with Neumann boundary conditions on the
nonmortar edges and a zero Dirichlet boundary condition on the remaining part of
the subdomain boundary. Hence we call it a Neumann–Dirichlet preconditioner.

4. Condition number estimation. In this section we analyze the condition
number bound of the FETI-DP operator with the Neumann–Dirichlet preconditioner.
In advance, we will provide the following two lemmas, which prove that the matrices
Krr and Fcc are invertible.

Lemma 4.1. The matrix Krr is invertible on XI ×QI ×Wr.
Proof. Since the upper left 2 × 2 matrix of Krr is invertible, it suffices to show

that the Schur complement Srr is invertible on Wr:⎛⎝AII GII AIr

Gt
II 0 Gt

rI

ArI GrI Arr

⎞⎠⎛⎝uI

pI
ur

⎞⎠ =

⎛⎝ 0
0

Srrur

⎞⎠ .(4.1)

For any ur ∈ Wr, we consider

ut
rSrrur =

⎛⎝uI

pI
ur

⎞⎠t⎛⎝AII GII AIr

Gt
II 0 Gt

rI

ArI GrI Arr

⎞⎠⎛⎝uI

pI
ur

⎞⎠
=

(
uI

ur

)t(
AII AIr

ArI Arr

)(
uI

ur

)
+ 2ptI

(
Gt

II Gt
rI

)(uI

ur

)
=

(
uI

ur

)t(
AII AIr

ArI Arr

)(
uI

ur

)
.

Here uI and pI are the solution of (4.1), and we have used that Gt
IIuI + Gt

rIur = 0.
The last equality in the above equation gives that Srr is symmetric and positive
definite on Wr.

Lemma 4.2. Assume that the domain Ω has the triangulation to satisfy that

−
∑
i

(p0,∇ · vr)Ωi +
∑
i,j

μ ·
∫

Γij

(vi
r − vj

r) ds = 0 ∀ vr ∈ Wr,

−
∑
i

(p0,∇ · vc)Ωi +
∑
i,j

μ ·
∫

Γij

(vi
c − vj

c) ds = 0 ∀ vc ∈ Wc

give the solution (p0

μ ). Then the coarse problem Fcc is invertible.
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Proof. We define a Schur complement matrix⎛⎜⎜⎝
AII GII AIr AIc

Gt
II 0 Gt

rI Gt
cI

ArI GrI Arr Arc

AcI GcI Acr Acc

⎞⎟⎟⎠
⎛⎜⎜⎝

uI

pI
ur

uc

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0(

Srr Src

Scr Scc

)(
ur

uc

)
⎞⎟⎟⎠ .

As in the proof of the previous lemma, we can show that the Schur complement(
Srr Src

Scr Scc

)
is symmetric and positive definite. The matrix Fcc is then given by⎛⎜⎜⎝

Srr Src Gr0 Bt
rR

Scr Scc Gc0 Bt
cR

Gt
r0 Gt

c0 0 0
RtBr RtBc 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

ur

uc

p0

μ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0

Fcc

⎛⎝uc

p0

μ

⎞⎠
⎞⎟⎟⎠ .(4.2)

We assume that uc, p0, and μ give

Fcc

⎛⎝uc

p0

μ

⎞⎠ = 0,

and we will show that they are zero. Multiplying (4.2) by
(
ut
r ut

c −pt0 −μt
)
, we

obtain (
ur

uc

)t(
Srr Src

Scr Scc

)(
ur

uc

)
+

(
ur

uc

)t(
Gr0 Bt

rR
Gc0 Bt

cR

)(
p0

μ

)
−
(
p0

μ

)t(
Gt

r0 Gt
c0

RtBr RtBc

)(
ur

uc

)
= 0.

It follows that (ur

uc
) = 0 because the Schur complement matrix is symmetric and

positive definite and the last two terms cancel each other. Equation (4.2) then reduces
to (

Gr0 Bt
rR

Gc0 Bt
cR

)(
p0

μ

)
= 0.

This is equivalent to the equation in the assumption. Hence we have (p0

μ ) = 0.
Remark 4.1. Most triangulations of the domain Ω satisfy the assumption of

Lemma 4.2 because the number of velocity unknowns vr and vc is usually grater than
the number of unknowns p0 and μ.

Lemma 4.3. We have

B(
˜̃
W ) = B(W̃ ) = M̃.

Proof. From
˜̃
W ⊂ W̃ , the inclusion B(

˜̃
W ) ⊂ B(W̃ ) is obvious.

We will show that

B(W̃ ) ⊂ B(
˜̃
W ).
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Let E(wn) = (w1, . . . ,wN ) ∈ W be the zero extension of wn ∈ Wn. Since wj |Γij
= 0

for j ∈ mi, i.e., for functions on mortar interfaces, and E(wn) has zero value at
subdomain corners, the identity holds

B(E(wn)) = B̂wn,(4.3)

where the matrix B̂ is defined in (3.14), and it is one-to-one from W̃n onto M̃ ,

B̂(W̃n) = M̃.(4.4)

For wn ∈ W̃n, the zero extension E(wn) = (w1, . . . ,wN ) satisfies∫
Γij

wi ds = 0 ∀ i = 1, . . . , N, ∀Γij ⊂ ∂Ωi,

and then the compatibility condition of the local Stokes problem holds:∫
∂Ωi

wi · ni ds = 0.

This implies that E(wn), for wn ∈ W̃n, belongs to the space
˜̃
W . From this fact and

(4.3) we obtain

B̂(W̃n) ⊂ B(
˜̃
W ).(4.5)

From the definition of W̃ and M̃ , we have

B(W̃ ) = M̃.(4.6)

Combining (4.6), (4.4), and (4.5), we prove B(W̃ ) ⊂ B(
˜̃
W ).

Remark 4.2. Lemma 4.3 says that the constraints∫
∂Ωi

wi · ni ds = 0

do not affect the range space B(W̃ ).
We now provide the following well-known identity that is useful for the analysis

of the condition number bound.
Lemma 4.4. For λ ∈ M̃ , we have

〈FDPλ,λ〉 = max
w∈˜̃

W\{0}

〈Bw,λ〉2
〈Sw,w〉 .

Proof. The problem (3.6) is equivalent to the following min-max problem:

max
λ∈B(

˜̃
W )

min
w∈˜̃

W

{
1

2
〈Sw,w〉 − 〈d,w〉 + 〈Bw,λ〉

}
,(4.7)

where d is the Schur complement forcing vector obtained from
(
f tI 0t f tr f tc

)t
after

solving local Stokes problems.
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Let PW be the l2-orthogonal projection

PW : W → ˜̃
W.

Note that B(
˜̃
W ) = M̃ from Lemma 4.3, and P is the projection from M onto M̃

introduced in section 3. We consider

w = (w1, . . . ,wN ) such that wi =

(
ur|∂Ωi

Li
cuc

)
,

where (ur,uc) is from the solution of (3.6). The fifth and sixth rows in (3.6) give∫
∂Ωi

wi · ni ds = 0 ∀i = 1, . . . , N,∫
Γij

(wi − wj) ds = 0 ∀ Γij .

These equations imply that w belongs to
˜̃
W . By taking the Euler–Lagrangian in

(4.7), we can see that (w,λ) ∈ ˜̃
W × M̃ from the solution of (3.6) satisfies(

Sp Bt
p

Bp 0

)(
w
λ

)
=

(
P t
Wd
0

)
,(4.8)

where

Sp = P t
WSPW , Bp = P tBPW .

Since S is symmetric and positive definite (s.p.d.) on
˜̃
W , the equation for λ follows

by eliminating w in (4.8):

BpS
−1
p Bt

pλ = BpS
−1
p d,

which is the same as (3.7). Therefore we have the identity

BpS
−1
p Bt

p = FDP .(4.9)

For λ ∈ M̃ , we consider

max
w∈˜̃

W\{0}

〈Bw,λ〉2
〈Sw,w〉 .(4.10)

Since S is s.p.d. on
˜̃
W , the maximum in (4.10) occurs when Spw = Bt

pλ, and it gives

max
w∈˜̃

W\{0}

〈Bw,λ〉2
〈Sw,w〉 = 〈BpS

−1
p Bt

pλ,λ〉.(4.11)

From (4.9) and (4.11), the required identity follows.

Remark 4.3. From (4.9), we can see that FDP is s.p.d. on M̃ .
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Remark 4.4. From Lemma 4.4, E(wn) ∈ ˜̃
W for wn ∈ W̃n, and (3.10), we obtain

the following lower bound of the FETI-DP operator:

〈FDPλ,λ〉 = max
w∈˜̃

W\{0}

〈Bw,λ〉2
〈Sw,w〉

≥ max
wn∈W̃n\{0}

〈BE(wn),λ〉2
〈SE(wn), E(wn)〉

= 〈F̂DPλ,λ〉.

The following lemma can be found in Bramble and Pasciak [5].

Lemma 4.5. For wi ∈ Wi, we have

C1β
2〈Siwi,wi〉 ≤ |wi|21/2,∂Ωi

≤ C2〈Siwi,wi〉,

where β is the inf-sup constant of the finite element space associated with the subdo-
main Ωi and the constants C1 and C2 are independent of hi and Hi.

Since we have chosen the inf-sup stable P1(h) − P0(2h) finite element space, the
constant β is independent of hi and Hi.

We also have the following result, which is derived in [17, Lemma 5.1].

Lemma 4.6. For w = (w1, . . . ,wN ) ∈ W , we have

‖wi − wj‖2

H
1/2
00 (Γij)

≤ C max
l∈{i,j}

{(
1 + log

Hl

hl

)2
}(

|wi|21/2,∂Ωi
+ |wj |21/2,∂Ωj

)
.

Definition 4.7. We define the mortar projection πij : [H
1/2
00 (Γij)]

2 → Wij by∫
Γij

(v − πijv) · λij ds = 0 ∀λij ∈ Mij .

From Lemma 2.2 in [1], πij is continuous on H
1/2
00 (Γij); i.e., there exists a constant

C such that

‖πijv‖H1/2
00 (Γij)

≤ C‖v‖
H

1/2
00 (Γij)

∀v ∈ [H
1/2
00 (Γij)]

2.(4.12)

We now provide an upper bound of the FETI-DP operator.

Lemma 4.8. For λ ∈ M̃ , we have

max
w∈˜̃

W\{0}

〈Bw,λ〉2
〈Sw,w〉 ≤ C

1

β2
max

i=1,...,N

{(
1 + log

Hi

hi

)2
}
〈F̂DPλ,λ〉.

Proof. From the definition of πij , we have

〈Bw,λ〉 =

N∑
i=1

∑
j∈mi

∫
Γij

(wi − wj) · λij ds =

N∑
i=1

∑
j∈mi

∫
Γij

πij(wi − wj) · λij ds.

(4.13)



1148 HYEA HYUN KIM AND CHANG-OCK LEE

Let zn ∈ Wn be zn|Γij = πij(wi − wj). Since (1
0 ), ( 0

1 ) ∈ Mij and w ∈ ˜̃
W , we have∫

Γij

zn ds =

∫
Γij

(wi − wj) ds = 0,(4.14)

so that zn ∈ W̃n. From (3.10), the definition of F̂DP , (4.13) can be bounded by

〈Bw,λ〉2 = 〈BE(zn),λ〉2 ≤ 〈F̂DPλ,λ〉〈SE(zn), E(zn)〉,(4.15)

where E(zn) = (z1, . . . , zN ) is the zero extension of zn. From Lemma 4.5, (2.5),
(4.12), and Lemma 4.6, we obtain

〈SE(zn), E(zn)〉 =

N∑
i=1

〈Sizi, zi〉

≤ C
1

β2

N∑
i=1

|zi|21/2,∂Ωi

≤ C
1

β2

N∑
i=1

∑
j∈mi

‖wi − wj‖2

H
1/2
00 (Γij)

≤ C
1

β2
max

i=1,...,N

{(
1 + log

Hi

hi

)2
}

N∑
i=1

|wi|21/2,∂Ωi

≤ C
1

β2
max

i=1,...,N

{(
1 + log

Hi

hi

)2
}
〈Sw,w〉.

(4.16)

The estimates (4.15) and (4.16) give the required bound.
From Remark 4.4 and Lemmas 4.4 and 4.8, we obtain the condition number bound

of our FETI-DP algorithm.
Theorem 4.9. The FETI-DP algorithm with the Neumann–Dirichlet precondi-

tioner (3.10) has the condition number bound

κ(F̂−1
DPFDP ) ≤ C

1

β2
max

i=1,...,N

{(
1 + log

Hi

hi

)2
}
.

5. Numerical results. In this section, we provide numerical tests for the pro-
posed FETI-DP algorithm. The following Stokes problem is considered:

−�u + ∇p = f in Ω,

−∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(5.1)

where Ω is a unit rectangle in R
2 and f is given from the exact solution

u =

(
sin3(πx)sin2(πy)cos(πy)
−sin2(πx)sin3(πy)cos(πx)

)
and p = x2 − y2.

We consider only the uniform partition of Ω. The notation N = 4×4 means that
Ω is partitioned into 4 × 4 square subdomains. With this partition, we triangulate
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Fig. 1. Triangulations for velocity (left) and for pressure (right) when n = 5.

Table 1

CG iterations (condition number) when n (the number of nodes) increases with a fixed N = 4×4

(the number of subdomains): F̂−1
DPFDP (with preconditioner), FDP (without preconditioner).

Matching Nonmatching
n

FDP F̂−1
DPFDP FDP F̂−1

DPFDP

5 12(5.23) 9(2.62) 16(8.35) 12(3.75)
9 24(2.50e+1) 13(4.39) 50(1.15e+2) 15(5.79)
17 37(6.68e+1) 15(5.94) 86(5.01e+2) 17(7.93)
33 45(1.45e+2) 17(7.75) 119(1.31e+3) 20(9.88)
65 58(2.69e+2) 19(9.85) 153(3.29e+3) 22(1.20e+1)

Table 2

CG iterations (condition number) when N (the number of subdomains) increases with n = 5

and 9: F̂−1
DPFDP (with preconditioner), FDP (without preconditioner).

Matching Nonmatching
n N

FDP F̂−1
DPFDP FDP F̂−1

DPFDP

4 × 4 12(5.23) 9(2.62) 16(8.35) 12(3.75)
8 × 8 12(5.42) 9(2.62) 16(9.18) 12(3.68)

5
16 × 16 10(5.54) 9(2.55) 16(9.57) 11(3.42)
32 × 32 10(5.61) 9(2.53) 16(10.88) 12(3.78)
4 × 4 24(2.50e+1) 13(4.39) 50(1.15e+2) 15(5.79)
8 × 8 25(2.60e+1) 13(4.35) 53(1.19e+2) 15(6.21)

9
16 × 16 24(2.62e+1) 12(4.27) 57(1.34e+2) 16(6.27)
32 × 32 23(2.62e+1) 12(4.27) 56(1.25e+2) 16(6.24)

each subdomain in the following manner. Let n = 4k + 1 with k an integer. For
matching triangulations, we take the same uniform triangulation in each subdomain
with (n− 1)/2 + 1 nodes, including end points on both horizontal and vertical edges.
We denote it by Ω2hi

i , a triangulation for the pressure. A triangulation for the velocity,

Ωhi
i , is then given by dividing each triangle in Ω2hi

i into four triangles, as in Figure 1.
For nonmatching grids, we take randomly (n− 1)/2 + 1 nodes on each horizontal and
vertical edge and then generate a nonuniform structured triangulation Ω2hi

i from the

nodes. A triangulation Ωhi
i is obtained from Ω2hi

i , as before.

We solved the FETI-DP operator with and without preconditioner, varying N and
n on both matching and nonmatching triangulations. The CG (conjugate gradient)
iteration is terminated when the relative residual reduces by 10−6.

In Tables 1 and 2, the number of CG iterations and the corresponding condition
number are shown, varying N and n. Table 1 shows the numbers when (n − 1)
increases two-fold with fixed N = 4 × 4. The preconditioner performs well, and the
condition numbers seem to exhibit log2-growth as n increases. The preconditioner is
much more efficient for the nonmatching case. Table 2 shows the performance of the
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Table 3

Errors (factors) on matching grids: ‖u−uh‖1,∗ (broken H1-norm error for velocity), ‖u−uh‖0

(L2-norm error for velocity), ‖p− ph‖0 (L2-norm error for pressure).

N =
4 × 4 n = 5 n = 9 ‖u − uh‖1,∗ ‖u − uh‖0 ‖p− ph‖0

n N N
5 4 × 4 3.37e-1 3.75e-3 1.07e-1
9 8 × 8 4 × 4 1.72e-1 (0.510) 1.02e-3 (0.272) 5.99e-2 (0.559)
17 16 × 16 8 × 8 8.64e-2 (0.502) 2.64e-4 (0.258) 3.08e-2 (0.514)
33 32 × 32 16 × 16 4.32e-2 (0.500) 6.65e-5 (0.258) 1.55e-2 (0.503)
65 32 × 32 2.16e-2 (0.500) 1.66e-5 (0.249) 7.79e-3 (0.502)

Table 4

Errors (factors) on nonmatching grids when n increases with a fixed N = 4 × 4: ‖u − uh‖1,∗
(broken H1-norm error for velocity), ‖u − uh‖0 (L2-norm error for velocity), ‖p− ph‖0 (L2-norm
error for pressure).

n ‖u − uh‖1,∗ ‖u − uh‖0 ‖p− ph‖0

5 3.41e-1 3.79e-3 1.05e-1
9 1.78e-1 (0.521) 1.10e-3 (0.290) 6.08e-2 (0.579)
17 8.95e-2 (0.502) 2.85e-4 (0.259) 3.16e-2 (0.517)
33 4.48e-2 (0.500) 7.21e-5 (0.252) 1.58e-2 (0.500)
65 2.24e-2 (0.500) 1.81e-5 (0.251) 7.93e-3 (0.501)

Table 5

Errors (factors) on nonmatching grids when N increases with n = 5 and 9: ‖u−uh‖1,∗ (broken
H1-norm error for velocity), ‖u−uh‖0 (L2-norm error for velocity), ‖p− ph‖0 (L2-norm error for
pressure).

n N ‖u − uh‖1,∗ ‖u − uh‖0 ‖p− ph‖0

4 × 4 1.78e-1 1.10e-3 6.08e-2
8 × 8 8.95e-2 (0.502) 2.94e-4 (0.269) 3.28e-2 (0.539)

5
16 × 16 4.49e-2 (0.501) 7.33e-5 (0.249) 1.63e-2 (0.496)
32 × 32 2.25e-2 (0.501) 1.84e-5 (0.251) 8.18e-3 (0.501)
4 × 4 3.37e-1 3.75e-4 1.07e-1
8 × 8 1.72e-1 (0.510) 1.02e-3 (0.272) 5.99e-2 (0.559)

9
16 × 16 8.64e-2 (0.502) 2.64e-4 (0.258) 3.08e-2 (0.514)
33 × 32 4.32e-2 (0.500) 6.65e-5 (0.258) 1.55e-2 (0.503)

preconditioner when N increases with n = 5 and 9. The CG iteration becomes stable
as N increases.

We have further observed the convergent behaviors of the approximated solution.
The H1 and L2-errors for velocity and pressure are examined. The errors and reduc-
tion factors are shown in Table 3 for various N and n on matching grids. Three cases
are considered: when n − 1 increases two-fold with a fixed N = 4 × 4 and when N
increases two-fold in both horizontal and vertical edges of Ω with a fixed n = 5 or 9.
For all cases, we can see that the H1-error for velocity and the L2-error for pressure
reduce by half, and the L2-error for velocity reduces by quarter. These factors are
optimal for the P1(h) − P0(2h) finite element space.

Tables 4–5 show errors and reduction factors for the nonmatching case. In Table 4,
we observe the optimal convergence of errors as (n−1) increases two-fold with a fixed
N = 4 × 4. When n = 5 and 9, as N increases, the errors also show the optimal
convergence in Table 5.

As mentioned in section 2, if the inf-sup constant of the space V ×P is independent
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Table 6

Inf-sup constant β0 when N increases with n = 5 and n = 9.

n = 5 n = 9
N

Nonmatching Matching Nonmatching Matching
4 × 4 0.5780 0.5785 0.5921 0.5924
8 × 8 0.5293 0.5294 0.5352 0.5353

16 × 16 0.5008 0.5010 0.5041 0.5042
32 × 32 0.4827 0.4828 0.4854 0.4848

Table 7

Inf-sup constant β0 when n increases with a fixed N = 4 × 4.

n Nonmatching Matching
5 0.5780 0.5785
9 0.5921 0.5294
17 0.5966 0.5967
33 0.5973 0.5979
65 0.5983 0.5983

of N and n, then the optimality of approximation can be shown for the space V ×P .
Let β∗ and β be the inf-sup constants for the space V × P and the P1(h) − P0(2h)
finite elements, respectively, and β0 be the inf-sup constant for the space V ×Π0; see
(2.9) and (2.2) for the definition. The constant β∗ depends on β and β0 from the trick
conceived by Boland and Nicolaides [4]. Hence, if the constant β0 is independent of
n and N , then the same holds for β∗. We showed that β0 is independent of n and
N numerically for various N and n. The results are given in Tables 6 and 7 for both
matching and nonmatching cases. We observe that β0 becomes stable as N or n
increases.
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