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Abstract

In this paper, a continuous variable structure con-
troller for robot robot masnpulator 13 proposed. The
proposed method guarantee that the tracking error
converges to zero maintaining the smoothness of the
actual control signal. In order to estimate the accel-
eration data, o siiding mode observer 13 used.

1 Introduction

The basic theory of a switching control system was
proposed in the Soviet Union in 1950’ (1] and there-
after the term “variable structure system (VSS)” and
“sliding mode control (SMC)” have been used for
such systems [2].

Even though the VSS has the invariance prop-
erty against system uncertainties and external dis-
turbances, it has the drawback so called “chattering
phenomena”. Since the VSS uses switching func-
tions to get an invariance property under the exis-
tence of system uncertainties and disturbances, it is
inevitable for the control input to show the chatter-
ing phenomena.

In order to overcome the chattering problem, lots
of techniques have been used [6]-{7].

Almost all of the researchers has used continua-
tion techniques. The continuation techniques are fo-
cused on the smoothing of switching function. The
switching function has been replaced by the satura-
tion function and/or a sigmoid function.

However, all of these methods suffer from the same
difficulty, that is, there is no quantitative rule for as-
signing boundary layer thickness of their algorithms.
Thus, the corresponding effects of the chattering al-
leviation may not be guaranteed. In addition, these
approaches can not guarantee the error convergence
to zero, i.e., only the boundedness of the error within
some predetermined boundary layer thickness can be
guaranteed.

Thus, in this paper, a smooth variable structure
controller that guarantees the error convergence to
zero is proposed for robot manipulators. The main
concept is to consider the combination of a low pass
filter (LPF) and the robot as a virtual plant, and de-
sign a virtual variable structure controller u for this

virtual plant as shown in Fig. 1. In this figure, r is
a real control signal and u means a virtual control
signal. The left block represents a virtual controller,
the middle block denotes a Low Pass Filter(LPF),
and the right block is a robot manipulator. The vir-
tual control signal u is designed for the virtual plant
(LPF + Plant). Then, although the virtual control
signal u shows chattering phenomenon due to the
switching function, the real control signal r shows a
smooth curve because it is an output of a LPF whose
input is u as shown in Fig. 2.

Therefore, the proposed control scheme guarantees
the smoothness of the real control signal without sac-
rificing tracking accuracy. That is, although the pro-
posed controller does not use the saturation function,
the control signal 7 shows a smooth curve.

The control scheme mentioned above, however, has
to use the acceleration data which is not easy to ob-
tain in usual case. In this paper, thus, the smooth
variable structure controller using sliding mode ob-
server is proposed to estimate the acceleration of the
joint of the robot manipulators. The closed-loop sys-
tem is locally exponentially stable and region of at-
traction is also analyzed.

2 Virtual Plant Dynamics

The dynamic equation for an n-link robot manipula-
tor is linearly parameterizable as follows:

M(9)d+Clq,9)4+G(9) =Y (9,4, 90 =7 (1)

where ¢,4,§ € R™ are the joint angular displace-
ments, velocities, and accelerations, respectively.
M(q) is the n X n positive definite inertia matrix,
C(g,q) is the n X n matrix corresponding to Corio-
lis and centrifugal factors, G(q) is the n x 1 vector
of gravitational torques, r is the n x 1 input torque
vector, 0 is a constant p-dimensional vector of inertia
parameters and Y is an n X p matrix of known func-
tions of the generalized coordinates and their higher
derivatives. It can be assumed that the parameter
vector f is uncertain and there exists §p € RP and
p € Ry, both known, such that ||4|| := |[|§ — bo]] < p
[4].
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From the LPF’s input-output relation, the follow-
ing equation can be obtained. 7 + A7 = u where
A =diag(A1,A2,...,An),and A; > 0,1 =1,2, ..., n.
Thus, for the virtual control signal u, the dynamic
equation of the virtual plant can be described by

MG+MG+AMi+Ci+Ci+ACG+G+AG = u (2)

where u is the n X 1 virtual control input vector.

Introducing the state vectors Z; = ¢, Z = ¢,
Z3 = ¢, the virtual plant (2) can be rewritten in
the following state-space representation:

Z, = %
I, = I3
:_.5'3 = ﬂ(il,'ig,ié) + M(El)'lu (3)

where
B(Z1,%2,%3) = —M(z,) ! {(M+ AM + C) T3
+(C’+AC)52+C¥+AG} (4)

which defines a locally observable representation in
the sense of the lie-algebra, as defined by Hermann
and Krener [9).

Then, introducing the tracking error state vectors
Ty =q—qd, T2 = ¢ — 44, T3 = § — §q where g4 € R"
represents the desired trajectory vector, the similar
representation can be obtained for the tracking error
space as the following:

2.:1 = Z2

5:2 = I3

23 = PB(z1+ 9, T2 + da, T3 + Ga) + M~ u — g45)
where ¢, € C3(0, 00).

It is obvious that the above representation can be
rewritten as the following:

t=Az+ B(y+p) (6)

where zT = [zf,zg,zg'], y=M;'u, 8 =B—da+

(M~*M, — I,)y, and

0 I, O 0
A=|0 0 I, B=1]0
0 0 O I,

and I, € R™*" is an identity matrix. The following
assumption is assumed to be valid.

Assumption 1 There ezists a known function § >
0 and a posotive known constant ¢y > 0 such that

ie-All < B (7
IM™*Mo~L|| < <1 (8)

for all thesr arguments where ﬁ 13 the estimate of S.

3 Design of Continuous VSS
using Full States

Consider the following function augmented sliding
surface s € R™ so that s(0) = 0 is assured.

s =23+ A1zg + Aoz, — Ne 22t (9)

where A; = diag()\,-l,)‘,-g,...,)\,-n), Aij > 0,7 =1,
2,3,andj =1,2, ..., n, N=z3(0) + A1z2(0) +
A2z1(0). Then, the control law can be obtained from
the sliding mode existence condition sTs < 0, that
ls’

§=y+P1+A1z3 + Az + NAge 43t
Therefore, the control law can be given by
y=Ga—A1Z3— Aaza — NAse 23t — f—Ws—p.sgn(s)

where p is a scalar positive bounding function satis-
fying the following inequality:

WB—B—(MMy—L)y||<p (10)

From the Assumption 1, p can be obtained by the
following equation:

da — B - WUs — Ayzz — Aoz — NA3e—A3t

P = Co
+cop+ﬁ.

Therefore, p can be defined as the following:

p = 1 ‘o ||&"1-—,§—\I’8—A113'—Agzg—NA:;C—A’t
— Cq

B

1'—60'

“+

Then, for the virtual control law u = Mjy, the fol-
lowing theorem can be stated.

Theorem 1 Applying the following virtual control
input (11) to the virtual plant (6), the closed-loop
system 13 globally ezponentially stable.

u = M (‘id — A1z3 — Mgz — NAsc—A’t
—B—Ws— (p+n)- sgn(s)) (11)

where n = [nl,’72v-"a’7n]T1 7.>0,:=1,2,...,n

Proof For the Lyapunov function candidate
1 o . .. .

V = =T s, its time derivative can be derived as the

following:

V = T =47 (:ﬁs + Ayz3 + Apzy + NAae"A")

= ST ((M—IMO - In)(éd - Alzs - Agzz
~NAge™hst — ﬁ? —(p+n) - sgn(s))
+B — B = Ws+ (p+n) - sgn(s))
—UTs =Y el

=1

IA
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Thus, it is easy to know that V is a positive definite
function of s and V is a negative definite function
of s. Therefore, V is a Lyapunov function. Further-
more, since s(0) = 0, V(0) = 0 and hence s = 0
¥t > 0. Hence, it is obvious that the tracking error
exponentially converges to zero. »

Corollary 1 The system s in the sliding mode all
the time, that1s, s=0 V t > 0.

Remark 1 Since the virtual control input u con-
tains switching function sgn(-), u produces a high
frequency switching signal. However, as shown in
Fig. 1, the real control signal v does not contain high
frequency components because it is made by low pass
filtersng u. Therefore, from the result of the above
theorem, using the real control signal with no chatter-
ing, the tracking error exponentially converges to zero
masntasning the robustness against parameter uncer-
tainties all the time.

4 Design of Sliding Mode Ob-
' server

Based on the general scheme for the sliding mode
observer (8], the following state observer can be de-
signed:

2 = Ki%; + %2+ isgn(iy)
ég = KpZy+ 23+ rgsgn(i‘g)
i";s = K35:2 -+ I‘ssgn(ig) (12)

where 2;,%Z2, and 23 are the estimated values
of z1,z2, and z3, respectively, (:) ) — (),
K, K2, K3,T';,T'2, and '3 are n X n positive definite
matrices. Mp is the “nominal” inertia matrix. In the
simplest case, it will be only a diagonal constant ma-
trix, e.g., My = mol where my > 0. The nonlinear
function 5 is introduced to cope with the influence
of A in (4) and to account for differences between the
tracking errors and the observation errors.

By subtracting the observer equations (12) from
the virtual plant equations (5), the following equa-
tions can be obtained

&.';1 = —KiZ + 3%y~ I‘lsgn(il) (13)
ég = —KpZy+ %3 — stgn(ig) (14)
:‘2":3 = —K3Zq— Pssgn(iz) +y+ 6. (15)

Since the angular position and velocity can be ob-
tained from the encoder and the tachometers, respec-
tively, it is assumed that z, and z, are measureable
as described in the following assumption.

Assumption 2 The angular position{z;) and the
angular velocity(z) are measureable.

For the simplicity’s sake consider I';,I'; to be the
diagonal matricies, i.e., I'; = 711, I'2 = 721. Then
the following lemma can be obtained.

Lemma 1 The region {(z;,z3)|Z; = %, = 0} 15 in-

variant as long as |35| < 2.

Proof Consider the following Lyapunov function
l.p

candidate V; = 3% Z;. Then, from the equation

(13), it is obvious that vy < —zl TK1%, as long as
|Z5| < 1. Since it is assumed in Assumption 2 that
z; and z3 are measureable, ]:nz[ < 41 can be guaran-
teed. Therefore, #; = 0.

Similarly, by taking the other Lyapunov function

candidate V, = 55352, from the equation (14), it is

also shown that V, < < -1 T K%, as long as |£5] < 2.
Therefore, Z; = 0 if |75| < 2. [

The generalized notion of the solution of a differen-
tial equation with discontinuities on the right-hand
side such as (13)-(15) is given by [3]; the dynamics
on the switching surface is an average of the dynam-
ics on each side of the discontinuity surface. The
region within which the switching surface is invari-
ant is called “sliding patch”[8]. For the sliding patch,
the following lemma can be obtained.

Lemma 2 On the region of R = {(z1,22,73)|%: =
Iz = 0,|%%| < y2}, whick is called the sliding patch,
z3 = %3 + I28gn(%2), and the error dynamics of
[5{,5.-3,‘,5%‘]7' 13 given by the following reduced-order
dynamics: i

Z3=~Tiz+y+ 5 (16)

where I' = T'3T'7! = ~T with v > 0.

Proof Since Z,(t) = Z,(t) = 0, it is clear
from the equation (14) that Z; = [zsgn(Z;). Thus,
z3 = &3 + ['23gn(%3). In addition, it is also obvious
that sgn(%;) = I;'Z3. Therefore, from the equa-

tion (15), the following reduced-order dynamics can

be obtained:
%3 =-TZ3+y+f (17)
where ' = I'sI';! = 4I with y > 0. "

Remark 2 From the above Lemma, it can be known
that the acceleration data can be estimated as the fol-
lowing in the sliding patch R:

T3 = %3 + I'gsgn(iz) (18)

5 Stability Analysis for the

Closed-Loop System

It will be analyzed in this section that the stability
of the closed loop system with the variable structure
controller (11) using the estimated state through the
state estimator (12) in place of the true state. Since
z; and z, are asgsumed to be measureable in Assump-
tion 2, they can be used directly. The acceleration,
however, is not accessible directly. From Remark 2,
it was proved that the acceleration zj is given by (18)
in the sliding patch R.
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Instead of the vector z,

T
therefore, [z'f, 23, (23 + Fzsgn(ig))T] is used in
the controller (11). Let us define the new state vec-

tor z = [z7, 27, gg']T where ¢3 = £3 + [2sgn(Z2),
and the modified sliding surface

S§=¢ + Aizz + Aazy — NeAst (19)

where N = ¢3(0) + A122(0) + A2z:(0). Then, the
control law using the full states (11), can be modified
by

u= Mo(Ga — Aigs — Aazz — NAge 3¢
—B(z1+9d, T2+4d, ¢ +da) — W3 — (5 + 1) -sgn(3)]20)

where 7 is defined as

P=7 = ”‘i&“ﬁ"‘l’gﬂhs‘s—Azzz—_ﬁAaﬂ_Mt
o

+ E(zl + qd, Z2 + dd) %] + Qd) (21)

l—Co

Using the above control law {20}, the following the-
orem can be derived.

Theorem 2 The closed-loop system with the plant
(6) and the proposed control law (20) using the ob-
server (12) is ezponentially stable provided that the
state 1s in the sliding patch R.

Proof From Remark 2, in the sliding patch R, z =
Z, s = 5, and the control law (20) is identical with
(11). Therefore, in the sliding patch R, the closed-
loop system dynamics of (6) and (12) is described
as:

2=Az+B(y+5) (22)

where z = [z7, 23, 2%, T |T € R*"

0 I 0 o0 0
— 0 0 I, © =_ | 0
4=19 0 0 o B=11,
0 0 0 -T I,

(23)
In the sliding patch R, it is obvious that the sliding
mode existence condition s7 5 < 0 can be guaranteed
when the control law (20) is used. In addition, since
it is also clear that s(0) = O is guaranteed in the
sliding patch R, the system is in the sliding mode
all the time, that is, s = 0 V ¢t > 0 as Corollary
1. Therefore, one of the resulting dynamics can be
obtained from s = 0 as the following:

s =123+ A1Z2 + Apzy — Ne ™23t = 0. (24)

Obviously, the above resultant dynamics (24) is ex-
ponentially stable.

For the simplicity of the analysis, let us assume
that A; = 3A, A2 = 3A2%, A3 = A3 so that the poles
of the resultant dynamics are placed on —A.

The other dynamics can be obtained from the last
equation of (22) which is obtained from (16). Since

the condition 3 = 0 implies s = 0 as well as s = 0,
the following equations can be obtained:

i= 1.73 + A1z3 + Agxz + NAse_A“t = 0.
This implies the following equation:
v+ A1 = —A1z3 — Aazy — NAge™4s% (25)

Using the above equations (24) and (25), the last
equation of (22) which is obtained from (16) can be
rewritten as follows:

~

Z3 = -Tiz+y+h

—T#; — Ayz3 — Agzy — NAge 43t

~TZ3 + A; (A1 22 + Agzy — Ne™23%)
—Agzy — NAge 43t

—T%3 + (A2 — Ag) 22+ Ay Aqz,

~(ALN — NAg)e™2st, (26)

Thus, from the equations (24) and (26), it is obvious
that ¢ — g4 and %3 — z3 exponentially as ¢t — co. B

Since the exponential stability is guaranteed in the
sliding patch R, the region of attraction has to be
determined. For the simplicity of the analysis, it is
assumed that s = Az = z3 + 2Azo + A2z, where
A=[A% 240 1] € %% A = AL, and ¥ = ¢I,.
The following lemma will be used.

Lemma 8 There ezxists a positive definite matriz
Q = QT € R¥"*4" such that B'P = X where
A= E\ On] € R*X4m 0, € R™X" 13 the zero ma-
triz, 13 the unique positive definite matriz satis-
fying the Lyapunov equation ZgP + PXf; +Q =0
where Ag = (14,. - ﬁ) A - BYA.

Proof By Kalman-Yakubovich lemma {10}, it is -
sufficient to show that Ao is asymptotically stable
and A (314,, — Zo) “'Bis strictly positive real. After
some simple manipulation, one can obtain the follow-
ing result: det (slyn, — Ao) = (s + ) (s + ¥) (s + A)%.
Thus, Ao is asymptotically stable. In addition, it is
also easy to show the following equation:

1
s+

which is strictly positive real. =

Now, let us define the Lyapunov function candi-
date as V (z) = 27 Pz. Differentiating the V (2) with
respect to time, we have

A(shin—Ao) 'B= I, (27)

"/.

2T (on + Xg‘P) z — 2p2T PBsgn(s)
+2zT PB (n - f1)

—2TQz — 2psT sgn(s) + 25T (n— 1)
~27Qz < ~Amin(Q)[l2]* < O

IA A

where Apin (') means the minimum eigenvalue of (-).
Since the above inequality is satisfied provided that
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the system is in the sliding patch R, it sould be guar-
anteed that z is always in the sliding patch R. It is
clear that V is bounded as Amin(P)[2]* < V <
Amaz(P) ||2]|> where Amaz(-) means the maximum
eigenvalue of (-). Thus, a region of attraction, where
z remains in the sliding patch R and z is asymptoti-
cally stable, is given by

2= {z | Izl < 123/ Aenin PV s (P | -

Remark 8 Let us define £,(0) = z,(0) and 2;(0) =
z2(0) and consider the closed-loop system (6), (12),
(16) with (20). Then once a trajectory starts in the
region {1, the overall system always shows the invari-
ance property against parameter variations and ezter-
nal disturbances all the time, and the tracking error
and the estimation error converges to zero ezponen-
tially. Therefore, ) 1s a domain of attraction for the
closed-loop system.

6 Simulation Results

The simulation has been carried out for a two-link
robot manipulator model used by Yeung and Chen
[5]. The parameter values are also the same as those
of Yeung and Chen.

The results are shown in Figs. 3~6 .

The tracking error of the proposed controller is
presented in Fig. 3. One can easily know that the
tracking error converges to zero.

Fig. 4 shows the modified sliding surface variable
¥ defined in (19). As can be shown in this figure, 3
is in the sliding mode all the time even though the
actual control signal 7 shows a smooth curve(Fig.
8) . Therefore, the closed-loop system shows invari-
ance property against parameter uncertainties all the
time, that is, the system response always shows the
same curve under the existence of parameter varia-
tions and external disturbances.

In Fig. 5, the virtual control signal u is given.
Because of the switching function(sgn(-)), it chatters
with the high frequency.

However, as in Fig. 6, the real control signal 7
applied to the robot(real plant) shows the smooth
curve.

7 Conclusions

In order to overcome the chattering problem, first or-
der LPF and the concept of a virtual controller/plant
has been used. The proposed control scheme guar-
antees the invariance property against parameter un-
certainties maintaining the smoothness of the real
control signal without sacrificing the tracking accu-
racy. That is, although the proposed controller gen-
erates a smooth control signal r, the system is in
the sliding mode all the time and the tracking error
converges to zero exponentially under the existence
of parameter uncertainties. The closed-loop system
has been shown to be globally exponentially stable.

Since the chattering-free variable structure con-
troller uses the acceleration data, a smooth control
law using the estimated acceleration is proposed and
the stability for the closed-lop system has been veri-
fied.
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