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Stable Identification and Control
Using Multiple Neural Networks and Supervisory Control
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Abstact - In many applications of the neural
networks to system identification and control,
we often ignore the problem of stability. This
paper suggests successive identification and
control scheme using muitiple neural networks
to handle this eritical problem of stbility. The
main theme of the scheme is that we always
assure the identification process in the basin of
attraction of one unique stable equilibrium point
obtained by nonlinearity canceling. The starting
point of identification is the small reigon we
know in the whole state space of system and
this region can be obtained through the concept
of supervisory control. We cannot assure the
stability one hundred percent but it is a
reasonable and powerful scheme as we can see
from the simulation results.

I. INTRODUCTION

The main concept.can be split in
two. First, we always identify the system
with the state trajectory converging to the
stable equilibrium point and start with the
regicn identified under stability using
supervisory control so we can always
asswre the stability until task is completed.
Second, identification on the domain of
stable equilibrium point avoids nonuniform
data sampling which occurs due to
unstable equilibrium points.

A. Supervisory Control

The target system for which we
want to apply discrete-type supervisory
control must have an input as an additive
term, that is,

x(k+n)=fx(k)x(k+1),,x(k+n~1))+bu
(1
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In such a system, if function f is
bounded, | fI < f, by adding a
supervisory control input us activated

when the Lyapunov function V of error
dynamics is larger than Vu, small reigon
is identified with state trajectory being
confined in the assigned boundary. So to
speak, supervisory control does the role of
pushing when state trajectory shows a
tendancy to exit out of the boundary.
When the supervisory control
input is not activated, in other words, the
current state is inside the pre-~assigned
region, we assume that the classical PD
control is enough to roughly track the
desired trajectory for getting uniformly
distributed training samples. But most of
cases concerned does not have this
property, so it takes much time to make

the neural network finely approximate the
nonlinear function. Therefore, it’s better
to choose the supervisory controlled region
as small as possible.

B. Identification and Control
Using Multiple Neural Networks
After small region is identified by
the supervisory controller, we start the
new procedure of successive identification
and control. First, we make a stable
equilibrium point at the center of the
identified region. Then, checking the
relative stability by a certain criterion
function, the neural network is trained
until the approximation error is smaller
than we want. This process assures
stability cause we get the training samples
from the state trajectory converging to the
equilibrium point. The feasibility of this
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procedure is based on the fact that there
always exists more or less stable region
due to the generalization property of the
neural networks.

The significant  problem in
combining supervisory control and
successive  identification and  control
algorithm is that successive identification
and control algorithm we developed is
applied to a system which is different
from (1). But when the order of a system
is the first, two forms are same. The
efforts to match two forms are now
proceding.

II. DESIGN OF THE SUPERVISORY
CONTROLLER

The system equation is given by
the equation of motion (1) where fis an
unknown nonlinear function, b is a known
positive constant andu € R is the input.
Define the  state  vector x(k)=
[x(k),x(k+1),~ x(k+n-1)) and it is
available by measurement. Our control

objective is to design a neural network’

identifier and controller to track the given
" reference  signal X¢ by using the
pre~designed supervisory controller. The

nonlinear funtion Ax) is unknown but
assumed to be bounded such that

| Ax) 1 S (x). (2)
Let the error vector Xe.=X- X4, then we
can control the system with the following

u =%[-j( x)+xa(k+n) -k Xe) (€)]

where the gain k=[kykz, ~,kalis chosen
for the polynomial h(z)=
2"+knz" P44k to have eigenvalues
inside the unit circle. Applying (3) to (1)
makes the systermn asymptotically stable,
but this control input can not be
implemented since A x) is not known. Our
purpose is to design a neural network
controller instead of using (3). Before
designing the neural network controller,
we design a supervisory controller that is
used to train the networks within the
region of interest.

From now on, the supervisory controller is
designed using Lyapunov theory to
guarantee the boundedness of the system
trajectory. Suppose that the controlu is
the addition of the neural network based
controller, u., which will be designed
later, and the supervisory control, us,
therefore,

U= Uctus 4)
Substituting (4) to (1), we have

x(k+n)=fx (k))+ bluc+us). (5)

"By adding and substracting bu’ in (1),

we obtain the equation of error:

xelk+n)=-k xe( k)+bluctus-u"), (6
or equivalently

xe (k+1)=Axe (k) +bluc+us—u") )
where
0 1 0 0 0
0 0 1 =~ 0 0
A= : : R N b=t
0 0 0 - 1 0
-k -kz k3 - —kn b

8
Let’s define V"—%X;PXe, where P is a

symmetric positive definite matrix
satisfying the following Lyapunov equation

A'PA-P=-Q, 9
where @ is positive definite. Then the

forward difference of V along the system
trajectory becomes

AV =V(k+1)-V(k)
== %xéQxa xA Pb(uc+us-u’)

<- _é'X;QXe

+ llx,;I\/Pbl( fu™ 1+ fuclh)
+XeAPb\1;

§1D)]
We build the supervisory control us as
follows

us= ~Isgn(xeA P | uc
t (P4 xatean) |+ 1 K xe 1))

(11)



Ao 8D 85

where I=1 if V>Vu and I=0 otherwise
and Vum is a constant specified by the
designer according to the training region
of the neural networks. Substituting (11)
and (3) into (10) for the case of 7=1, we

have
i

V -5 xQxer | xAPo 1 (171 -f)
< - 5 XQx<0

. (12)°
Therefore using the supervisory control

us of (11), we always have V<Va.
Further, since P is positive definite, the
boundedness of V  implies the
boundedness of x., which implies the
boundedne;s of x.

'SIMULATION STUDY:
We consider the inverted pendulum of
which the dynamic equation is governed

by

mi®x+Bx+mglcos(x)=u 15)

where x denote the joint angle. For the
simplicity of simulation, - assume all the
parameters of (15) are 1. Then the
equation (15) results in

x==x-cos(x)+u (16)
We select Vm such that

Ix(t)] < "zyi‘sin(“é‘). Fig.l shows the

tracking control of the desired trajectory

no,
given by xan= o4 sin ( —-ztz-).

II. SUCCESSIVE IDENTIFICATION
AND CONTROL

We used a supervisory control
input to get the identification of small
region under stability and set the base for
extention to the outer space. In this
chapter the concept of successive
identification and control will be explained.

When the system is the first order, we
will use graphical analysis to show the
reasonablity of the control scheme.

We focuses on the system which
can be 'expressed as the following
nonlinear difference equation:

x{k+1) =1 x(k)]+u(k) a7n
where x(k) and u(k) are the state and
control input at time k, u(k)x(k)€R",

and fR"—R" is an unknown mapping. If
we know the function in some domain we
can cancel out the nonlinearity and make
a point asymptotically stable. Such a input

ulk) is ~flx(k)]+Ax(k)+(I-A)x" Here

matrix A has eigenvalues inside the unit
circle. So, if we know a little part of
system, we can make a stable equilibrium
point in this region. Then we find the

basin of attraction of this point is
stretching outside due to the generalization
property. Here the word generalization
looks like somewhat vague. But we can
understand that if we handle the problem
using graphical analysis for the first order
case.

The concept of successive
identification and control was first
proposed by Kumpati S. Narendra and
Asriel U, Levin [3]. 1 think there are two
major problems. First, they wuse a
theorem(proof in [2]) below to assure that
the identification is performed in the basin
of attraction of a stable equilibrium point.
But, that is a purely mathematical theorm
so in practical applications it is difficult to
find input bound u that makes the state
trajectory inside the basin of attraction.
Also, they use the error between real
function and approximated neural network
as another neural network initiation
condition. For this reason, though they got
a successful result about the study of
uniform sampling, they did not find any
method to maintain stability.

Theorem:  Let p be the unique
asymptotically stable equilibrium point of
f on the interval I, then starting at any
point x(0)€I 3e st if luk)ll <e
then Yk x(k)eI

To solve these problems we
suggest a supervisory control mentioned
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earlier and a new neural network initiation
condition. I will show the validaty of this
criterion using graphical analysis. In figure
(a) below if the initial condition is
min(L1,L2) apart from the equilibrium
point they converge to the equilibrium
point because in this region it is always

satisfied that | x(k+1)-x"t <
I x(k)-x"| . Let's assume that we
have a function N; which approximates
£ x (k)) with the error less than 3 in
the region | x-x"|<D. Then, we can
make an equilibrium point at the center of
the known region by subtracting N, from

f and adding x°. The function f~Npx"
has the value near x° in the region

| x-x"| <D and does not vary fast
outside this region by the generalization
property of the neural networks(figure
(b)). This makes us get some stable
region and if we identify the region where

| x(k+1)-x"1 <D, we can satisfy

| x (k)-x"| <38 in 2-step. After finishing
the 1st identification we use another
neural network and repeat this procedure
to reach the goal.

We explain the procedure with the
aid of the graphical analysis in the case of
the 1st order system, but this algorithm
can be applied for the n-th order system
which can be expressed as (17).

SIMULATION STUDY:

We peform the simulation for the
1st order case with the assumption that
we know the region [-2, -15]. The result
is in Fig. 3.

IV. CONCLUSION

The most serious problem of this
paper is that the bridge between
supervisory control and successive
identification and control algorithm is too
narrow. The combination of both concepts
are only available for the 1st order
system. But, the neural network identifier
with the supervisory control provides the
fine control where the PD-control is
roughly working and successive
identification provides uniform and stable
sampling of training data in the restricted
class of systems.
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Fig. 1: Tracking Control
Using Neural Network Identifier
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Fig. 3 : Approximation of x3-x
by multiple neural networks



