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Abstract

In this paper, a feedback linearizing decoupling dynamic
control scheme of nonholonomic underactuated manip-
ulators with free-swinging passive joints is proposed in
Cartesian space where the task ts planned. The presented
control scheme does not require any braking process of
passive joints. The presented dynamic control scheme
has so-called “dynamic singularities” in the controller.
Therefore, the singularities must be avorded in the path-
planning so as to guarantee the avaslability of the con-
trol scheme. Singularity-free desired paths in Cartesian
space avoiding the dynamic singularities are obtained
through a computer simulation. Simulation results for a
three-link planar manipulator with one passive joint are
presented to show the feasibility of the proposed control
scheme with the singularity-free desired trajectory.

1 Introduction

The control of nonholonomic mechanical systems, 1i.e.,
systems with non-integrable differential constraints on
generalized coordinates, has attracted growing attention
in recent years. In fact, many nonholonomic systems
naturally fit into the category of underactuated mech-
anisms, defined as systems in which the dimension of
the configuration space exceeds that of the control in-
put space. Examples of nonholonomic underactuated
systems are acrobots, cart-pole systems, mobile-based
robots with no base actuators, a car with n-trailers with
passive joints, robot manipulators with failed actuators,
free-flying space manipulators without jets or momen-
tum wheels where the base can be considered as a virtual
passive linkage in inertial space, underactuated space-
crafts, underactuated surface vessels, hyper-redundant
(snake-like) robots with passive joints, underwater vehi-
cles with no base actuators, legged robots with passive
joints, etc.

In the control of fully-actuated manipulators, desired
control forces and/or torques may be applied to each
joint by actuators. These are actuated joints or active
joints. There are however manipulators with unactu-
ated joints or passive joints that may not have actua-
tors at some joints. In usual, a robot manipulator that
has fewer number of joint actuators than the number
of its total joints is so-called an underactuated mansp-
ulator [1]-[8f. It is well-known fact that an articulated
underactuated manipulator with passive joints satisfies

a second-order nonholonimic constraint which is a non-
integrable constraint on the acceleration [2][6].

The advantages of using such underactuated systems
reside in the fact that they weigh less, and consume less
energy than their fully-actuated counterparts, and allow
a more compact design and simpler control and com-
munication scheme. The underactuated robot concept
is also useful for the reliability or fault-tolerant design
of fully-actuated manipulators working with dangerous
materials or in remote or hazardous areas such as space,
underwater, nuclear power plants, etc. [2](4]-[9].

The term free-swinging failure refers to a hardware or
software fault in a robotic manipulator that causes the
loss of torque (or force) on a joint. After a free-swinging
failure, the failed joint moves freely under the influence
of external forces and gravity [8].

Several studies on the control of underactuated ma-
nipulators have been performed [1]-[8‘]. The research on
the control of underactuated manipulators in Cartesian
space without braking the passive joints has not been yet
studied actively and so it is currently a fresh problem.

In this paper, a feedback linearizing decoupling dy-
namic control scheme of underactuated manipulators is
proposed in Cartesian space where the task is planned.
This control scheme is based on the cancellation of the
nonlinear terms in the dynamics by a nonlinear feed-
back. The considered underactuated manipulator has
the active joints equipping the independent actuators
and the free-swinging passive joints without both the
actuators and the brakes. The presented control scheme
does not require any braking process of passive joints.
The presented dynamic feedback control scheme has so-
called dynamic singularities in the controller, which is
similar to those of free-flying space manipulators. The
dynamic singularities depend on the dynamic parame-
ters as well as the kinematic parameters. Therefore, the
singularities must be avoided in the path-planning in or-
der to guarantee the availability of the control scheme.
Singularity-free desired paths in Cartesian space avoid-
ing the dynamic singularities are obtained via a com-
puter simulation.

To show the feasibility of the proposed control scheme
with the singularity-free desired trajectory, simulation
results for a three-link planar manipulator with one pas-
sive joint are shown.
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2 Kinematics and Dynamics of Under-
actuated Manipulators

The kinematics in position level to map the position in
joint space to that in Cartesian space is written as fol-
lows: p. = f(q) € R™ where p, € ®™ is the manipu-
lator’s end-effector position and orientation vector with
respect to the base frame in Cartesian space, ¢ € R"
is the manipulator’s joint position vector in joint space
and f(g) € R™ is the nonlinear sinusoidal function of
the joint variable vector.

Differentiating the kinematics with respect to time,
the Jacobian relationship to map the joint velocity in
joint space to the linear and angular velocity of the end-
effector with respect to the base frame in Cartesian space
is obtained as follows:

pe = J(g) g €R™ (1)
where J(g) € R™*" is the Jacobian matrix of the robot
manipulator, which is usually the function of the joint
variable vector and the kinematic parameters such as
link length, etc.

The Jacobian matrix can be partitioned as follows:

J(g) = (Jalg) Jplq) ) er™" (2)
where J,(g) € R™*" is the active part of the Jacobian
matrix and Jp,(q) € R™*? is the passive part of it. Here,
n(= r + p) is the number of the total joints, r is the
number of the actuated or active joints and p is the
number of the unactuated or passive joints.

Using the Lagrangian formulation, the dynamic equa-
tion of a n-link rigid open-chain underactuated manipu-
lator with r-actuated joints and p-unactuated joints can
be written in joint space as follows:

M@+ Cladi+ 6l =r=Brn=( 5 )

where ¢ = (g7 ¢T)T € R("="*P) s the joint variable,
9o € R is the r-actuated (active) joints, g, € R? is
the p-unactuated (passive) joints, M(q) € R"*" is the
symmetric, bounded, positive definite inertial matrix,
C(g,9)d € R™*" presents the centrifugal and Coriolis
torques, G(q) € R™ is the vector of gravitational torques,
B € ®™* is the input matrix, 7 = (17 OT)T € ®" is
the control torque input vector, 7, € R 1s the actual
control input applied to the active joints, and Op € WP
is the zero input vector applied to the passive joints.
This equation (3) can be partitioned as follows.

My Map ‘ia F, — _ Ta
( My Mpp dp + ) Bre = Op A
where F(q,9) = (F§' F7)" = C(q,4)4 + G(q).
In equation (4), a second-order nonholonomic con-
straint ?2][6] which is a non-integrable constraint on the
acceleration is found as follows.

My go + Mppgp + F, = O, €RP. (5)

In order to perform control in Cartesian space, it is
necessary to obtain a dynamic model relating the Carte-
sian space variables’ accelerations to the torques applied
at the active joints.

Differentiating (1) with respect to time, the relation-
ship to map the joint acceleration to the acceleration of
the end-effector i1s obtained as follows.

P = J(@)d + J(9)§ €R™. (6)

Multiplying (3) by JM ™!, we have
JG+IM™'F =JM™? (3‘ ) =J,MIlr,  (7)
P

where M,, and J, are called the effective tnertsal matriz
and effective Jacobian matriz of the robot arm, respec-
tively, and defined as follows,

Mee = Moo — MM ' My, €R7%7, (8)

Jo = Ju— M M,e € R™XT (9)

and D(q) called decoupling matriz [5] for the system is
defined by
D(g) = JM™'B = J,M! e®™*r. (10)

Substituting (6) into (7), we can obtain the following
differential equation,

.~ blg,d) = Dlg)ra € ™ (11)
where b(g, ¢) = J(q,4)d — J(9)M () F(g,4) € R™.
3 Dynamic Control of Underactuated

Manipulators in Cartesian Space

A feedback linearizing decoupling dynamic controller is
made by the following form

7o = D¥(g)(v - b(g,4)) €W (12)
where D#(g) € R™*™ is the pseudoinverse matrix of
D(q) € R™*".

The property for the pseudoinverse matrix is shown
as follows.

Property 1: Let’s define a m by r matrix A. Then the
pseudoinverse matrix of A is A¥ € R*™. The following
three cases according to the magnitude relation of m and
r are shown.

1. When m < r; AA* =1, A¥A # I, A# =
AT(AAT)"!) where I, € R™*™ and I, € R"*" is the
identity matrices.

2. Whenm > r; A¥A =1, AA¥ #£ I, A# =
(AT A)"1AT.

3. Whenm=r; A¥A=AA¥* =1, =1,, A* = A"1

The availability of the above controller (12) is guar-
anteed by the following assumptions.

Assumption 1: It is assumed that r > m in the -
design of a controller.

Remark 1: From Property 1, It is easily found that
the number (r) of the actuated joints of a manipulator
which is greater than or equal to the m-dimensional con-
figuration space are needed to control the m-dimensional
configuration of the end-effector in Cartesian space by
driving r-actuacted joints. Therefore, the above assump-

tion is necessary to guarantee that D(q)D#(q) = I,,.

Assumption 2: In the controller (12), it s assumed
that the pseudo inverse of D(q), D*(q), ezists for all
joint configurations of the maipulator during the control
process. In other words, it s assumed that D(q) is of
full rank or nonsingular for all joint configurations.

Remark 2: Since r > m from Assumption 1, the fact
that D#(q) exists is the same that DDT € R™X™ js
invertible or of full rank from case 1 of Property 1.

Remark 38: Since the singularities of the decoupling
matrix D(g)(= JoM;,!) depend on both the kinematic
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parameters and the dynamic parameters, unlike the sin-
gularities for fixed-base manipulators, they are called
dynamac singularities.

With the control law (12), the differential equation
(11) can be rewritten by

Pe = b(Q) Q) + D(Q) Ta
= b(q,9) + D(q) D*(q)(v - b(g,9)) = v (13)

The outer loop input v is developed by v = pg— K, é—
Kpe where K, € ™™ and K, € R™*™ are positive
definite diagonal constant gain matrices. The Cartesian
tracking error e is also denoted as follows, ¢ = p, —
Pey, € R™X™ where p., € R™*™ is a desired trajectory
of the end-effector specified in Cartesian space.

We now summarize the control system as follows:

Pe = bg,9)+Dl(g) 7 (14)
Ta D#(Q)(U _b(Q$ Q)) (15)
v = pg— K,é— Kpe (16)

Theorem 1: Under Assumption 1 and £, if we apply
the control law (15) and (16) to the underactuated ma-
nipulator system !3), then the tracking errors are globally
ezponentially stable

Proof : Substituting {16) into (13), the closed-loop
error dynamics is found as follows:

é+ Kyé+ Kpe = 0. (17)

Therefore, the tracking errors ¢ and ¢ are globally expo-
nentially stable.

The proof of Theorem 1 is completed. [ ]

4 Path-Planning Avoiding Dynamic
Singularities

As mentioned before, the above assumptions (Assump-
tion 1 ~ 2) must be satisfied to guarantee the availabil-
ity of the presented controller. Once the manipulator is
within the inside of the singular configurations, Assump-
tion 2 is not guaranteed. Therefore, a path-planning
avoiding the dynamic singularities is needed.

In order to control the manipulator in Cartesian
space, the desired trajectory p.,(t) of the manipula-
tor’s end-effector should be planned in Cartesian space.
The kinematics mapping from joint space to Cartesian
space is many-to-one mapping, but the inverse kinemat-
ics mapping from Cartesian space to joint space is one-
to-many mapping. Thus, one Cartesian point has many
joint configurations.

The decoupling matrix D(q) is the nonlinear sinu-
soidal function of the joint position vector g. There-
fore, the singularities of D(q) must be shown in joint
space. The set of singular points found in joint space
can be shown as the regions in Cartesian space via the
kinematics. Some regions shown in Cartesian space cor-
responding to those shown in joint space may be the
singular regions or may not be the singular regions as
known by the inverse kinematics which is one-to-many
mapping. We call these regions “semi-singular regions”.
The terminology “sems-singular regions” means that it
is doubtful whether those are singular or not. On the
other hand, it is guaranteed that the regions which are
nonsingular in joint space are always nonsingular regions
in Cartesian space. Therefore, the desired path of the
end-effector avoiding the dynamic singularities should

be constituted within the inside of the regions in Carte-
sian space that the nonsingular regions in joint space are
transformed by the kinematics. Then, the desired path
of the end-effector which is made so can guarantee the
avoidance of the singularities.

We now presents a path-planning procedure avoiding
the singularities as follows.

1. Obtain the dynamic singularity regions such that
|Det(D(g) DT (q))| < ¢ for almost all joint config-
urations 1n joint space for the given manipulator,
where Det{(D D7) represents the determinant of
the matrix D(g) D7 (g) € R™*™.

Remark 4: Since r > m as assumed in Assumption
1, Remark 2 shows that the existence of D#(q) is
the same that Det(D(g) DT (g)) # 0. Since the in-
vestigation of the singularities is usually performed
numerically in digital computers, it is very difficult
that Det(D D7) becomes exactly zero. Therefore,
it is necessary that the criterion ¢ which is a very
small positive constant in the neighborhood of zero
is specified by designers.

2. Show the semi-singularity regions in Cartesian
space corresponding to the singularity regions in
joint space by means of the kinematics. Show
also the singularity-free regions in Cartesian space
corresponding to the nonsingular regions in joint
space.

3. Make a desired path or trajectory within the inside
of the nonsingular regions in Cartesian space.

5 Simulation Study

The underactuated manipulator to be simulated is a
three-link planar manipulator with one passive joint:
n=3r=2p=1m=2and sor = m. The sim-
ulated three-link planar underactuated manipulator is
shown in Fig. 1. It is here assumed that this passive
joint is freely swinging and does not have both the its
own actuator and the brake. It is assumed that there
is no frictions in the manipulator’s joints in this simu-
lation. It is also assumed that there is no joint limit on
each joint, namely, the joint angles can be moved from
0 (rad) to 27 (rad). The numerical physical parameters
of the simulated robot manipulator are shown in Table
1. The links are modeled as a uniform thin rod so that
the moments of inertia are determined by I; = l—lém‘Lf

and the length L ; by Zi(i = 1,2, 3).
Table I: Parameters of the simulated three-link robot

IL]!m[ l La(m

The simulation includes the singularity-free trajectory
planning and the feedback dynamic control tracking the
planned trajectory.

5.1 Singularity-Free Trajectory Planning

The desired trajectories avoiding the dynamic singulari-
ties are planned for three cases of a three-link planar ma-
nipulator according to the location of the passive joint
in this simulation study. The first case (Case 1) is the
case that the third joint is unactuated or passive. The
second one (Case 2) is the case that the second joint is
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passive. The case that the first joint is passive is the last
one (Case 3).

In this simulation, we also use two types of the desired
paths of the end-effector in Cartesian space: One is the
straight line (z4(t) = @ ya(t) + B); and the other is the
circle (z4(t) = Rcos(84(t)) + Zde, ya(t) = Rsin(84(t)) +
ydc). The type of the trajectory tracking these paths
used in this simulation is a quintic polynomial as follows:
For the straight line motion, y4(t) = ao + a1t + azt? +
ast® + ast* + ast®. For the circular motion, 64(t) =
bo +b1t+bat? +b3t® +bat? + bst®. The parameters of the
trajectories are obtain by the initial and final conditions.

Now, the singularity-free regions for the above three
cases are shown by the simulation. A small positive cri-
terion constant € shown in Remark 4 in order to deter-
mine the singularity numerically is selected as e = 10~7
in the following simulations.

5.1.1 Case 1 : The third joint (g3) is passive

For the manipulator with the robot parameters given in
Table I, the singularity-free regions in Cartesian space
or task space or operational space are shown in Fig. 2.
For the manipulator with the parameters given in the
following tables (Table II and Table III), these region
are shown in Fig. 3 and Fig. 4, respectively. The
moments of inertia [; and the lengths L. of the links
are modeled by the same method as before as follows:

L={ml, La = 5(=1,2,3).

Table II: Parameters of the simulated three-link robot
Li(m La[m La(m milk mal(k malk

Table III: Parameters of the simulated three-link robot
Li(m La(m La{m mlk malk ma(k

As shown before, two types of the desired trajectories
are planned to simulate the presented control scheme
with application to the manipulator with the link pa-
rameter values given in Table 1. For the straight line mo-
tion, the desired initial and final position in X-Y plane
are (zai,ya:) = (0.5,—0.5) and (z4,yar) = (—0.5,0.5),
respectively. The desired 1nitial and final velocities and
accelerations are (Zai, ¥ai) = (Zai,¥ai) = (Zdr,9ar) =
(Z4r,9ar) = (0,0). The total execution time (t;) is
ty = 5(sec). In the equation z4(t] = o ya(t) + 5,
a = 1,8 = 0. The parameters of a quintic polyno-
mial for ya(t) are as follows: a9 = —0.5,a; = 0,a; =
0,a3 = 0.08,a4 = —0.024, a5 = 0.00192. Therefore, the
desired path z4(t) = yq(t) is used in the control simu-
lation. For the circular motion, Ezd,-, yd;; = 20.5,0) and
(zarYar) = (0.5,0). (Zas, Ya:) = (Zas, Yas Zary Yar) =
(Z4r,Yar) = (0,0}, t; = 5(sec). In the equation z4(t) =
Rcos(8(t)), ya(t) = R sin((igt) , the radius of the circle is

= 0.5. The parameters of a quintic polynomial for 6(t)
are as follows: by = 0,b; = 0,by = 0,b3 = 0.502655, b4 =

—0.150796, bs = 0.012064. Therefore, the desired path

%"il(t) + y3(t) = R® is used in the control simulation.

e task is that the robot end-effector circulates one
time along the specified circle.

5.1.2 Case 2 : The second joint (g;) is passive

For the robot manipulator of Table I, Fig. 5 shows the
singularity-free regions when the second joint is passive.

5.1.83 Case 8 : The first joint (g;) is passive

For the robot manipulator of Table I, the singularity-
free regions are shown in Fig. 6 when the first joint is
passive.

In Fig. 2 ~ Fig. 6, the “semssingular regions” mean
that those regions may be singular or may not be singu-
lar as mentioned in Section 4. On the other hand, it is
guaranteed that the nonsingular regions in these figures
are always nonsingular for all joint configurations.

We can find the fact that the singularity-free regions
are very various according to the robot parameter values
such as link length, link mass, location of center of mass
of each link and link inertia. It is also obtained that
the singularity regions are much different according to
the location of the passive joints. In Fig. 4, all the
regions of the total workspace of the given manipulator
are the semi-singular regions in Cartesian space, and
thus we can say that a Cartesian space control of this
manipulator is not always possible.

Now, the dynamic control results tracking the desired
trajectories planned in the inside of the singularity-free
regions found in the above simulations are shown in the
next.

5.2 Dynamic Control in Cartesian Space

Simulation results for the controller (15) and (16) are
shown in Fig. 7 ~ Fig. 10. We show two cases of the
control results according to the direction of the plane
which the planar manipulator moves: In other words,
the first case is the parallel case to the ground. The
perpendicular case to the ground is the second one. In
the case that the robot moves in the horizontal plane to
the ground, the vector of gravitational torques G(g) in
the dynamic equation of the planar manipulator is zero.
On the other hand, the vector of gravitational torques
G(qg) is non-zero in the case that the robot moves in the
vertical plane to the ground.

In this simulation, the case that the first and second
joints are active and the third joint (g3) is only pas-
sive is considered. The numerical parameter values of
the simulated manipulator are presented in Table I. The
moments of inertia and the lengths of the center of mass
of each link are the same as given before.

The actual initial position of the end-effector in X-
Y plane is the same as the desired initial position.
The used PD gains are K, = diag(1000,1000); K, =

diag(2+/1000, 2/1000).
5.2.1 Parallel Plane to Ground : G(q) =0

Fig. 7-(a) ~ Fig. 7-(d) and Fig. 8-(a) ~ Fig. 8-(d) show
the control resuts for the straight line motion and the
circular motion with a quintic polynomial, respectively.
As shown in Fig. 8-(d), the magnitude of the control
torque input is small because G(g) = O and then the
great force to move the passive joint is not necessary.

5.2.2 Perpendicular Plane to Ground : G(q) #0

Fig. 9-(a) ~ Fig. 9-(d) and Fig. 10-(a.{ ~ Fig. 10-(d)
show the control resuts for the straight line motion and
the circular motion with a quintic polynomial, respec-
tively.

As shown in Fig. 10-(d), the magnitude of the control
torque input is large compared to the case of G(g) = 0,
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because G(g) # O and then the great force to move the
passive joint is necessary to overcome the gravitational
force. As a result, Fig. 9-(c) and Fig. 10-(c) show
that the first joint angle (g;) has very large value, which
means that the first link moves the several rounds.

As found in the above simulation results, it has been
shown that the presented singularity-free path-planning
and dynamic control scheme are feasible and valid.

6 Conclusions

The kinematics, dynamics, path-planning and control of
underactuated robot manipulators with a second-order
nonholonomic constraint have been considered in this
paper. A dynamic feedback control scheme of under-
actuated manipulators has been proposed in Cartesian
space. The considered underactuated manipulator has
the active joints equipping the independent actuators
and the free-swinging passive joints without both the
actuators and the brakes. The presented control scheme
does not require the braking process of passive joints.
For the control in Cartesian space, it can be found that
the number of active joints should be greater than or
equal to the number of configurational dimension of the
robot end-effector in Cartesian space. In order to guar-
antee the availability of the control law, singularity-free
desired paths in Cartesian space avoiding the dynamic
singularities have been obtained via the numerical com-
puter simulation.

The feasibility of the proposed control scheme with
the singularity-free desired trajectory have been shown
through the simulation study for a three-link planar ma-
nipulator with one free-swinging passive joint.

The proposed control scheme can be extended for
the control of large class of underactuated robot manip-
ulators including spatial redundant manipulators with
many passive joints as well as planar underactuated ma-
nipulators under the enough dynamic coupling between
the active joints and the passive ones.
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Fig. 1. A three-link
planar underactuated
manipulator.

Fig. 2. Semi-singular regions
and nonsingular regions
(Case 1 and Table I).

@ Semi-Singular Region
O Nonsingular Region
(boundary lines do not belong to nons region) ®

@ Scmi-Singular Region
QO Nonsingular Region
dary lines do not beloag to noosingular region)

Fig. 3. Semi-singular regions
and nonsingular regions
(Case 1 and Table II).

Fig. 4. Semi-singular regions
and nonsingular regions
(Case 1 and Table III).
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(Case 2 and Table I).

Fig. 6. Semi-singular regions
and nonsingular regions
(Case 3 and Table I).
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Fig. 7-(b). Actual and
desired trajectory of robot
end-effector in X-Y plane.
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Fig. 7. Dynamic control results when G(g) =0
and the desired trajectory is
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end-effector in X-Y plane.
(solid line : Actual value;
dashed line : desired value)

Fig. 8-(a). Snapshot
of robot motion.
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Fig. 8-(d). Control
torque input (Nm).
(solid line : 71;
dashed line : 73)

Fig. 8-(c1). Each
joint angle (rad).
(solid line : q1;
dashed line : ¢q3;
dashdot line : g3)

Fig. 8. Dynamic control results when G(q) =0
and the desired trajectory
is the circular motion.
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Fig. 9-(b). Actual and desired
trajectory of robot
end-effector in X-Y plane.
(solid line : Actual value;
dashed line : desired value)

Fig. 9-(a). Snapshot
of robot motion.
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a?% T. (ra.d). . torque input (Nm).
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Fig. 9. Dynamic control results when G(q) #0
and the desired trajectory
is the straight line motion.
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Fig. 10-(b). Actual and
desired trajectory of
robot end-effector in X-Y plane.
(solid line : Actual value;
dashed line : desired value)

Fig. 10-(a). Snapshot
of robot motion.
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Fig. 10-(c). Each Fig. 10-(d). Control
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Fig. 10. Dynamic control results when G(q) # 0
and the desired trajectory
is the circular motion.



