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Uncertainty-Compensating Neural Network Control

for Nonlinear Systems
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Abstract — A novel neural network learn-
ing and control scheme is presented. The neu-
ral network learns uncertainty of the system
and compensates it. To train the network, un-
certain compensation learning is derived. Ef-
ficiency of the proposed learning and control
are verified through the simulation study.
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I. PROBLEM STATEMENTS

Consider a class of single-input nonlinear time-
varying systems described by

z(n) + f(zjj:,...,x("”l),t) = u,

(1)

where z is a scara output of interest of the sys-
tem, f(-) is an unknown nonlinear function, and
u is a scara control input [6]. Define the state
vector x = [z,z,... ,x(""l)]T and desired state
vector Xg = (24,24, .. ,z&""l)]T. Then the con-
trol problem is for the state x to follow the de-
sired state X4 in the presence of uncertainty on
the function f(-). In other words, if we define
the error state vector X, = X4 — x, then the con-
trol problem is equivalent to design a controller

to make x, — 0.

If the uncertain nonlinear function f(-) is
known exactly, such a control problem can be
easily solved by designing a controller:

u' = f(x,t)+ m&n) +k7x,,

(2)

where k = [ky, k3,.
vector. We can make the closed-loop system re-

..y ka)T is a constant gain

sponse stable when k;’s are chosen as the poly-
nomial A(s) = " + kns"" D 4 ... 4 kos + ky is a
Huriwtz.

However, this controller can not be imple-
mented because the nonlinear function f(-) is not
known. Hence, we will design a neural network
controller compensating the uncertain nonlinear-

ity.

II. UNCERTAINTY- COMPENSATING
NEURAL NETWORKS

The main objective is to compensate uncertainty
using neural networks and to achieve a good con-
trol performance. To obtain such a control ob-
jective, we design a controller of the form:
- e F o) T

U=0+tnp = f+ 2, +K X+ tnn, (3)
where @ = f + x&") +xkTx,, f is the estimation of
f, and u,, is the neural network controller.
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Fig. 1: Uncertainty compensation learning and control

Applying the controller (3) to the system (1),
we obtain the closed-loop error dynamics:

o™ + k7%, = Af — tnn, (4)

where Af = f — f From this result, we can see
that if the neural network controller compensates
uncertainty Af, then the right-hand side of (4)
vanishes, so does the error dynamics.

To see how this can be achieved, consider the
learning rule of neural networks:

%%‘ = "n%gj, (5)
where w; is a typical parameter (weight or bias)
of neural networks, 7 is a constant learning rate,
and F is a cost function to be minimized. Since
the control objective is to minimize ||up, — A S]],

it is sufficient to choose

1
B= flun - A7 (6)
From this, the learning rule can be rewritten as
d‘w]' aunn
—d—t— - (Unn - Af) awj
du
- (n) T Zrinn
= (2 +x"x,) . Q)

where (4) is substituted into (7). We call this
uncertainly compensation learning (UCL), since
the neural network learns and compensates un-
certainty by this learning rule (Fig. 1). The UCL
structure has the following advantage:

e Teaching signals or desired outputs of neu-
Only
preparing the error dynamics is sufficient

ral networks are not necessary.

for learning.

e Error back-propagation through the plant
[5] or the plant identification model [3] is
not required.

e Control and learning can be conducted si-
multaneously.

ITI. SIMULATIONS

We apply the proposed neural network learn-
ing and control to an uncertain nonlinear time-
varying system:

Z+ [0.5+ 0.2sin(t)]z + 3.2cos(z) =u  (8)

which can be thought of as an inverted pendulum
on the presence of viscous friction. We assume
there is no adequate estimation of f, so we only
set f = 0. In this case, the uncertainty becomes
the nonlinear function itself, Af = f = [0.5 +
0.2sin(t)]z + 3.2 cos(z).

The following control input is applied to (8):

u o= (Id + koz, + klze) + Unn (9)

where k; and k, are chosen as 100 and 20, re-
spectively.
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The neural network controller is trained by the
UCL rule:

dw; . .
—EJ' =n (Iz + k2I¢ + klxe)

dupp

10
pan, (10

where the learning rate is chosen as n = 0.02.
Neural networks here are layered networks that
have 3, 10, 6, and 1 number of nodes in input,
first hidden, second hidden, and output layers,
respectively. Hidden nodes have nonlinear ac-
tivation functions, tanh(-), while output nodes
have linear activation functions.

Following figures show the simulation results
0.5sin(t).
To show the efficiency of the learning control

for the desired trajectory z4(t) =

method, we also plot the response when only
4 = Zg+ 20z, + 100z, is applied. Fig. 2 shows
that the controller 4 alone cannot decrease the
tracking error. On the contrary, it shows the
control performance becomes better and better
as the neural network learns (Fig. 3) and com-
pensates the nonlinear function more and more

accurately (Fig. 4).

1V. CONCLUSION

The main idea of neural network learning con-
trol presented here is to compensate uncertainty.
Neural networks learn uncertainty by the pro-
posed uncertainty compensation learning. The
presented learning scheme does not require de-
sired outputs of the neural network, nor back-
propagation of the error through the plant. Fur-
thermore, learning is proceeded while controlling
the plant.
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(a) Desired and actual trajectory (solid and dashed line,

respectively).

0.6 - : Fig. 4: f(x,t) and the neural network output (solid and
}) dashed line, respectively).
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(b) Tracking error (z, = z4 — 2)

Fig. 3: Responses of the case u = 4 -+ unn i8 applied.
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