
A Per-object Based Hybrid Concurrency Control

Kwak, Tae-Yeong, Lee, Yoon- Joon, Kim, MyoungHo
CS department, Korea Advanced Institute of Science and Technology

{ tykwak, yjlee, mhkim} @dbserver.kaist.ac.k

Abstract

Existing concurrency control algorithms do not well
conform to various environments, in the performance
perspective. Each algorithm has some assumption on the
conflict characteristic of its execution environment, and
its performance degrades when the assumption fails.

rl per-object hybrid scheme integrating two-phase
locking algorithm with parallel validation technique is
presented to solve this problem. Read and write accesses
on each database object are controlled by one algorithm
at a time. This controlling algorithm can alter during
transactions are running, in order to enhance the overall
system performance. In the simulation studv, proposed
scheme with the proposed algorithm alteration strategy is
shown to well conform to various execution environments,
better than both two-phase locking algorithm and parallel
validation technique.

1. Introduction

For obtatining high performance. multiple transactions
are running concurrently in most database systems. Such
concurrent executions may bring inconsistency into the
database. unless the interaction between transactions are
carefully controlled. Serializable execution of transactions
is proven to preserve the database consistency.

So far, several algorithms have been proposed in order
to control concurrent transactions. The major assumption
on transaction conflict classifies these algorithms into two
groups. Pessimistic algorithms including 2-phase locking
algorithm [7] assume that a transaction tends to conflict
with others. Conversely, optimistic algorithms such as
validation techniques [8] assume that conflicts between
transactions seldom occur.

The characteristics of concurrency control algorithms
have been evaluated in various ways [1,5,6,9]. It is widely
accepted that potential deadlock and lock management
overhead are major defects of 2-phase locking algorithm.
It, however. performs better than validation techniques

when transactions frequently conflict with others. Recent
studies showed that the concurrency control performance
relies heavily on the significance of resource utilization.

Database system is utilized for various appication area.
Concurrency control algorithm embedded in a database
system thus should be highly adaptable. In this respect,
integration of several algorithms has been tried. Most
proposals concentrate on using different algorithms per
transaction [4,11,12]. The use of algorithms per data
object was also suggested [lo]. In [lo], They pointed out
that the per-transaction based strategies fail to sufficiently
exploit the advantages of each basic algorithm. The idea
proposed in [lo] does not, however, give direct solution
for the centralized databases. Furthermore, most of these
previous works did not give any quantitative evaluation of
the proposed algorithm’s performance characteristics in
various execution environments.

We propose a per-object based integration strategy that
couples 2-phase locking algorithm and parallel validation
technique. Generally, each database object has only one
controlling algorithm at a time. The system dynamically
determines the appropriate algorithm for each object to
enhance performance. Transactions do not have to care
the controlling algorithm for each object.

Transactions have their private workspaces [2]. They
execute in four phases: the normal execution phase, two
check phases, and the update phase between check phases.
After doing all of its operations in the normal phase.
every transaction checks its validity in check phases. If it
fails to validate itself, it dies or kills other transactions to
keep the consistency of database. Validated transactions
transfer their execution results to the persistent database
in their update phases.

The criterion of choosing algorithm for each object is
that what algorithm would waste less transaction time.
Every access on a data object causes the re-estimation of
mean wasted time for a transaction in accessing that
object. If the current algorithm is assumed to waste too
much time, the other algorithm begins to control the
accesses on that object. Statistical information such as the
mean transaction execution time, the aborted transaction

748
O-8186-8147-0/97 $lO.OO@ 1997 IEEE

Proceedings of the 8th International Workshop on Database and Expert Systems Applications (DEXA '97)
0-8186-8147-0/97 $10.00 © 1997 IEEE

count, the mean lock duration time. and the blocked
transaction count are maintained per each object for this
purpose.

The remainder of the paper is organized as follows.
Section 2 describes basic concurrency control algorithms
used in this paper. Section 3 presents the proposed
integration strategy. Correctness of our work is shown in
section 4. Section 5 compares our proposed algorithm
with the basic algorithms. Section 6 describes related
works on the integration of heterogeneous algorithms. In
section 7, we conclude with a discussion.

2. Basic Algorithms

Most of existing concurrency control algorithms deal
with every operation in the same manner. We can classify
these homogeneous algorithms by their assumption on
transaction conflict. Pessimistic and optimistic algorithms
are major classes in this classification. Algorithms in the
former class assume that transactions are likely to conflict
with each other. and that these conflicts are serious; the!
should be resolved immediately. Pessimistic algorithms
block the execution of conflicting transactions or roll
them back as soon as any conflict occurs, to prevent or
avoid non-serializable executions. Conversely, optimistic
algorithms assume that conflicts seldom occur. This class
of algorithms does not consider conflicts seriously. In
general. it lazily detects and recovers executions that are
non-serializable: it verifies transactions’ validity at the
end of their execution, then terminates and restarts the
transactions that cause conflicts. Well-known examples of
each class are strict two-phase locking algorithm [7] and
parallel validation technique [S], which we adopt as basic
algorithms into our work.

Performance studies have been done to investigate the
operational characteristics of each algorithm. Empirical
study with real-life database reference strings has shown
that optimistic algorithms outperform locking algorithms
if the I/O costs can be neglected by large buffers [9].
Analytic evaluation of concurrency control algorithms has
claimed that overhead of validation techniques is bigger
than that of 2-phase locking algorithm [S]. Overheads of
deadlock detection and resolution are neglected in this
study, however. Thus, we can conclude that overheads of
each algorithm are quite comparable. as assumed in [l].
Simulation studies [1.6] have shown a surprising result.
When the conflict rate or the degree of concurrency is low,
two-phase locking algorithm and validation techniques
perform similarly. If the degree of concurrency becomes
high, two-phase locking algorithm works better, when
resource contention is significant. Validation techniques
work better with plenty of resources.

3. Integration Strategy

Our approach to integrate strict two-phase locking with
parallel validation technique is described here. The data-
base system model, the data object access procedures, the
serializability validation procedures. and the algorithm
alteration procedures are presented in turn.

3.1 Database system model

A database consists of independent data objects. Thus.
implicit accesses to a data object by accessing another are
prohibited. If a transaction T accesses a data object s. T
must contain some operation p[x] on x.

Each data object has a type which represents its control
algorithm for the operations on that object. Allowed types
are L and P that indicates strict 2-phase locking algorithm
and parallel validation technique respectively. In general.
Every data object has exactly one type at any given time.

Private workspace model [2] is used in our work: even
transaction has its private workspace. and there are three
types of operations: read. pre-write, and write.

read (x) returns the value of x.
pre-write (x, v) updates the value of s in the

workspace to be v.
write (x) transfers the value of x from the workspace

to the database.
Transactions run in four phases: the normal phase. the

first check phase, the update phase, and the second check
phase (Table 1). In the normal phase of a transaction T,
all read and pre-write operations of T on P-typed data
objects go with no restriction. The read-set and the write-
set are maintained for T to keep track of the P-typed data
objects T has accessed during its execution. T’s operations
on L-typed data objects generally follow 2-phase locking
protocol: every read or pre-write operation on an L-typed
data object x must be preceded by the appropriate lock
acquisition, unless T has already accessed x under parallel
validation. The lock table is maintained to manage locks.

The first check phase begins after all operations of T
have done in the normal phase. In this phase, the validity
of T with transactions in their update phases is verified. T
aborts and restarts its execution if the validation fails: the
update phase begins otherwise. In the update phase. the

Execution TVpe of data object
phases L I P

IlOtTd

1’ chsck

lock, read.
pre-write

read, pre-write

Validation with transactions in their
update phase

” p&e

2”’ check unlock

write
Validation with transactions in their

normal phase
Table 1. Operations and procedures in each phases

749

Proceedings of the 8th International Workshop on Database and Expert Systems Applications (DEXA '97)
0-8186-8147-0/97 $10.00 © 1997 IEEE

function read (s);
if (s is in read-set or in write-set or x is P-typed)

then insert (x. read-sef):
else lock (x. shared);

endif;
if (a copy of x esists in the private workspace)

then return the value of the copy of x:
else return the value of the original x;

endif;
end:

procedure pre-write (x v);
if (s is m read-set or in wrrte-sef or s is P-typed)

then insert (x, wife-set);
else lock (.x exclusive);

endif:
if (no copy of s exists in the private workspace) then

create a copy of s;
endif:
value of the copy of x t v;

end:

Figure 1. Read and pre-write

values of updated copies in T’s workspace are transferred
to the persistent database by write operations. In the last
phase. which is the second check phase. the validity of T
with transactions in their normal phases is v,erified. When
the validation fails, all transactions that conflict with T
are forced to restart. T completes its execution after the
validation finishes.

3.2 Accessing Data Objects

The read and pre-write operations are shown in Figure
1. The lock operation is slightly modified so that ‘what
transaction is blocked when’ information is recorded for
the object that the lock request is not granted.

During the unlock operation. this recorded information
is used to update the mean lock duration. ‘Wasted time by
block’ information is recalculated then. to decide whether
it needs to change the control algorithm of the data object.

The write operation only transfers the value of the data
object to the persistent database from the local workspace.

3.3 Validation in Check Phases

As in the validation techniques. our scheme assigns the
increasing transactton number to each transaction when it
starts its first check phase. For each transaction Tj and for
all transaction T,s that have smaller transaction numbers
than that of T,. one of the following conditions must hold:

1. T, completes its update phase before TJ starts its
normal phase.

2. T,‘s write-set does not intersect T,‘s read-set, and
T, completes its update phase before T, starts its
update phase.

3. T,‘s write-set does not intersect both T,‘s read-set
and write-set. and T, completes its normal phase

before T, completes its normal phase.
For concurrently running transactions. the condition 1

does not hold. Thus. the condition 2 or 3 must hold for
them. In the first check phase, the condition 3 is verified;
the condition 2 is verified in the second check phase.

Check phases are synchronized: transactions should
enter a critical section to perform each check phase.

When the validation fails in any check phase. restarts
of one or more transactions occur. Transactions do book-
keeping jobs before they abort: for each data object that
cause a restart, ‘when transaction aborts’ information is
recorded. ‘Wasted time by abort’ information is again
calculated to determine whether it needs to change the
control algorithm.

3.4 Control Algorithm Alteration Strategy

procedure first-check-phase (T);
valid t true;
conflict-set C null;
for each transaction U that is in its update phase do

rs t intersection (read-set of T. wrrte-set of U);
ws t intersection (write-set of T. wrrte-set of U);
if(either rs or ws is not null) then

valid t false;
conflict-set t conflict-set u rs v ws;

endif;
done:
if (valid is false) then

for each data object x in conflict-set do
record transaction abort time for s:
recalculate the wasted time by abort:
make decision of algorithm change;

done;
unlock all locks possessed by T:
T aborts;

endif;
end;

procedure second-check-phase (T):
for each transaction U that is in its normal phase do

valid t true;
rs t intersection (read-set of U, write-set of T);
if (rs is not null) then

valid c false;
for each data object x in rs do

record transaction abort time for x;
recalculate the wasted time by abort;
make decision of algorithm change;

done;
endif:
if (valid is false) then

unlock all locks possessed by U:
U aborts;

endif;
done;
unlock all locks possessed by T;
update mean transaction execution time;
T commits;

end:

Figure 2. Check phases

750

Proceedings of the 8th International Workshop on Database and Expert Systems Applications (DEXA '97)
0-8186-8147-0/97 $10.00 © 1997 IEEE

procedure change-Corn-L-to-P (x);
for each transaction T which possesses the lock on x do

case lock mode of x of
shared: insert (x, read-set of T);
exclusive: inseri (x, read-set of T);

insert (x wrrfe-set of T);
end;

done;
lock mode of x t none;
clear the information of x about lock-possessing T’s;
typeofxtP;

end;

procedure change-from-P-to-L (x);
clear the information of x about lock-possessing T’s;
for each transaction T which have accessed x do

give T an exclusive lock on x;
done;
lock mode of x t exclusive;
typeofxtl;

end;

Figure 3. Algorithm alteration procedures

Concurrency control algorithms degrade the system
throughput by wasting execution time of transactions. For
example, transactions waste their execution time when
they are blocked under strict 2-phase locking algorithm,
while transactions waste their execution time when they
are aborted under validation techniques. We adopt these
wasted time measures to evaluate the system status and to
select an appropriate algorithm for each data object.

Let rL be the wasted time by strict 2-phase locking, and
zp be the wasted time by parallel validation technique.
Then, these values can be estimated like this:

zL z mean lock duration x #blocked T’s
zp z mean transaction execution x # aborted T’s
If both values are known, it is quite natural to select

the control algorithm for a data object by comparing these
two measures. However, it is impossible to know the both
simultaneously, as only one algorithm works at a time.

Thus, some threshold value is used in the selection of
algorithm. When the magnitude of the measure currently
considered exceeds a predefined threshold value, control
algorithm change occurs.

Algorithm alteration procedures are shown in Figure 3.
Nore that information for data objects already accessed
under the parallel validation technique, contained in read-
set and write-set of transactions, remains unchanged after
the algorithm change. This trick allows transactions see
the control algorithm for each data object invariantly.

4. Correctness of the proposed strategy

We describe the proof that our scheme guarantees the
serializable transaction execution. The proof is based on
the serialization graph (SG) for an execution history. It is
proven that a history H is serializable if and only if its

serialization graph SG(H) is acyclic [3]. We present a
descriptive proof.

Lemma 1. Let H be an execution history of committed
transactions generated by our algorithm, and suppose that
T; + Tj is in SG(H). Then, the first check phase of Ti
precedes the first check phase of TJ.

Proof Since T, -+ T,, there must exist conflicting
operations p[x] E T, and q[x] E TJ respectively, such that
p[x] precedes q[x]. There are 4 different cases.

Case 1: Suppose that p[x] and q[x] are all under strict
2-phase locking algorithm. As under the 2-phase locking
algorithm, the unlock on x in Tj precedes the lock on x in
T,. As the first check phase of every transaction precedes
all unlock operations and succeeds all lock operations, the
first check phase of T, precedes that of T1.

Case 2: Suppose that p[x] and q[x] are under parallel
validation technique. Assume, by way of contradiction,
that the first check phase of T, precedes the first check
phase of T,. Then, the transaction number of TJ precedes
that of T,, and one of the following conditions must hold:

1. T, completes its execution before T, begins.
2. TJ’s write-set does not intersect T,‘s read-set, and

TJ’s all operations precede Ti’s write operations.
3. T,‘s write-set does not intersect both Ti’s read-set

and write-set, and Tj’S read operations precede
T,‘s write operations.

This means that, for conflicting operations s E T, and t
E T,, s must precede t. It contradicts that p[x] precedes
q[x]. Thus, the first check phase of T, precedes that of TJ.

Case 3: Suppose that q[x] is under parallel validation
technique. and that p[x] is under strict 2-phase locking
algorithm. If Ti and Tj are concurrent, this case cannot
happen. Thus, Ti should precede Tj, resulting that the first
check phase of Ti precedes that of TJ.

Case -I: Suppose that p[x] is under parallel validation
technique. and that q[x] is under strict 2-phase locking
algorithm. The lock on x in T, is preceded by the end of T,.
Then. the first check phase of T, precedes the lock on x in
Tj, which precedes the first check phase of TJ.

Lemma 2. Let H be an execution history of committed
transactions generated by our algorithm, and let Ti -+ TZ
-+ . . . + T, be a path in SG(H), where n > 1. Then the
first check phase of T, precedes the first check phase of T,.

Proof The proof is by induction on n. The basis step of
induction, for n = 2, follows immediately from Lemma 1.
For the induction step, suppose the given lemma holds for
n = k for some k > 2. We will show that it holds for n = k
+ 1. By the induction hypothesis, the path Ti + T2 + .*.
+ Tk implies that the first check phase of Ti precedes the
first check phase of Tk. But, by Tk + Tkil and Lemma 1,
the first check phase of Tk precedes the first check phase
of Tk+, Thus. the first check phase of T, precedes the first

751

Proceedings of the 8th International Workshop on Database and Expert Systems Applications (DEXA '97)
0-8186-8147-0/97 $10.00 © 1997 IEEE

check phase of Tk+, , as desired.
Theorem. Every history H generated by our algorithm

is serializable.
Proof Suppose that SG(H) contains a cycle Tr + T2 -+

. . . + T, + T, , where n > 1. By Lemma 2, the first check
phase of T, should precedes the first check phase of itself.
which is impossible. SG(H) thus has no cycles and so H is
serializable.

5. Performance

This section describes the evaluation of the proposed
scheme versus the basic algorithms, strict 2-phase locking
algorithm and parallel validation technique. We adopted
the performance model proposed in [11. Simulations are
performed in varying the number of resources reflecting
the environmental variety.

Our simulation parameters reflect that the database
contains 1000 data objects, that transactions are issued
from 200 terminals. that the transaction inter-arrival time
follows the exponential distribution with mean = 5 sec.,
that transactions may read 4 - 20 data objects and update
20 - 30% of them, and that disk I/O time for a data object
is 16 ms, while CPU time for a data object is 2 ms. The
size of database is taken to be small enough to observe
frequent conflicts. As in [l], the processing overhead of
algorithm itself is neglected.

Our algorithm with threshold equal to three times of
the mean transaction execution time is evaluated. Strict 2-
phase locking algorithm and parallel validation technique
are also evaluated for comparison. Initially, data objects
are all L-typed in our scheme.

In order to vary the execution environment, we change
the degree of concurrency and the number of resources.
Considered degrees are 5, 10, 25, 50, 75, 100, 150, and
200. We assume that there are N CPUs and 2N disks, and
vary N from 1 to 8 by doubling it. The throughput is used
as the performance metric. Each simulation consists of 20
batches, each of which is a run of 50 seconds succeeding a
run of 20 seconds. Thus, the total simulation time is 1000
seconds.

Figure 4 shows the simulation result with N = 1. For

Figure 4. Throughput with 1 CPU and 2 disks

14 -

12-

6-

Figure 5. Throughput with 2 CPUs and 4 disks

each algorithm, the throughput curve indicates thrashing;
as the degree of concurrency increases, the throughput
increases first. then reaches a peak, then finally degrades.

Strict 2-phase locking algorithm outperforms parallel
validation technique in this case. The performance of our
scheme is quite similar to that of strict 2-phase locking
algorithm, as the algorithm change seldom occurs.

When the system has 2 CPUs and 4 disks. the behavior
of each algorithm is fairly similar to that in the previous
case (Figure 5). The penalty of the resource contention is
reduced, however. Our scheme slightly outperforms strict
2-phase locking algorithm as the degree of concurrency
increases, verifying that dynamic allocation of algorithm
works well.

Figure 6 shows the throughput curves with N = 4 and
N = 8. The resource contention is much lowered. Parallel
validation technique outperforms strict 2-phase locking as
the penalty of wasting resource is lighten. Our scheme
works remarkably better than both the basic algorithms.
While the parallel validation technique is a better strategy
globally, strict 2-phase locking algorithm may outperform
for some data objects. The simulation result verifies this
expectation sufficiently.

6. Related Works

The need for a highly adaptable concurrency control
algorithm has driven several studies on the integration.
Several r-w and w-w synchronization techniques were
integrated in centralized database systems [4]. Two-phase
locking algorithm and serial validation technique were
merged in distributed database environment [111; every
transaction is typed either locking or optimistic. These

Figure 6. Throughput with N = 4 and N = 8

752

Proceedings of the 8th International Workshop on Database and Expert Systems Applications (DEXA '97)
0-8186-8147-0/97 $10.00 © 1997 IEEE

works concentrated on integration and correctness.
The concept of per-object heterogeneity was introduced

in [IO]. Data objects are typed. as well as transactions.
either locking or optimistic. While the concepts are quite
similar. this work utilizes time interval. which is useful in
distributed database systems. but not useful in centralized
database environment.

A modification of two-phase locking algorithm with
optimistic philosophy was proposed in [12]. Under this
scheme. transactions can access some predefined amount
of data objects without locks, but it needs to acquire locks
for accessed objects. in order to access more objects.

7. Concluding Remarks

Our goal for this work was to propose a concurrency
control scheme based on strict 2-phase locking algorithm
and parallel validation technique. In order to satisfy our
goal, we proposed per-object based algorithm integration
strategy.

The control algorithm for each object can change when
transactions are running, but the change is hidden to
running transactions for the synchronization purpose.
This enables the type of each object to be transaction-
consistent; every transaction considers that data objects
are static-typed.

The key idea of integrating both algorithms is to assign
the transaction number when all of the necessary locks are
acquired. The transaction number problem with parallel
validation technique [S] was also solved in our scheme by
separating validation job into two phases.

The rate of conflict is not a good measure to estimate
the system state. As we have seen, both algorithms show
the similar behavior when the rate of conflict is low. We
have developed a new measure based on the wasted time:
each algorithm waste some transactions’ execution time
in synchronizing the running transactions. The control
algorithm for a data object changes when the wasted
transaction time in accessing that object exceeds some
threshold value. The evaluation we have performed with
this measure shows that our measure works fine. Proposed
algorithm outperforms two basic algorithms we have used.

Algorithm change procedure and the storage overhead
are major defects of our scheme. Using lock table instead
of read-set and write-set may reduce both the overhead of
algorithm changing and storage overhead.

Additional information essential to maintain the type
of data objects dynamically is also a large space overhead.
The number of data objects in real-life databases reaches
to near several millions or more, and it would be difficult
to maintain only types in main memory. Maintaining only
the types of data objects which are currently being used is
a feasible solution to this problem. Newly accessed data

object can be treated by using a default type.
Only the recent conflicts are considered in our scheme,

in order to keep up quickly with the change of the conflict
tendency. It is not clear how to define the recentness, but
it seems fair to let the recentness interval be the multiple
of mean transaction execution time, since transactions are
sensitive only to the events during their life time.

References

[II R. Agrawal, M. J. Carey, and M. Livny,
“Concurrency Control Performance Modeling: Alternatives and
Implications,” ACM Trans. on Database Systems, vol. 12, no. 4,
1987, pp. 609-654.

[21 P. A. Bernstein, and N. Goodman, “Concurrency
Control in Distributed Database Systems,” ACM Computing
Surveys, vol. 13, no. 2, 1981, pp. 185-221.

[31 P. A. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database Systems,
Addison-Wesley, 1987.

[41 H. Boral, and I. Gold, “Towards A Self-Adapting
Centralized Concurrency Control Algorithm,” ACM SIGMOD
Record, vol. 14, no. 2, 1984, pp. 18-32.

151 M. J. Carey, “An Abstract Model of Database
Concurrency Control Algorithms,” ACM SIGMOD Record, vol.
13, no. 4, 1983, pp. 97-107.

[61 M. J. Carey, and M.R. Stonebraker, “The
Performance of Concurrency Control Algorithms for Database
Management Systems, ” in Proc. 10m Conf. on Very Large Data
Bases, 1984, pp. 107-I 18.

[71 K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger, “The Notions of Consistency and Predicate Locks in a
Database System,” Commun. of ACM, vol. 19, no. 11, 1976,
pp. 624-633.

[81 H. T. Kung, and J. T. Robinson, “On Optimistic
Methods for Concurrency Control,” ACM Trans. on Database
Systems, vol. 6, no. 2, 1981, pp. 213-226.

[91 P. Peinl, and A. Reuter, “Empirical Comparison of
Database Concurrency Control Schemes,” in Proc. 9’ Conf. on
Very Large Data Bases, 1983, pp. 97-108.

[lOI J. F. Pons, and J. F. Vilarem, “Mixed concurrency
control: Dealing with heterogeneity in distributed database
systems, “ in Proc. 14m Conf. on Very Large Data Bases, 1988,
pp. 445-456.

[III A. P. Sheth, and M. T. Liu, “Integrating Locking
and Optimistic Concurrency Control in Distributed Database
Systems”, in Proc. 6”’ Int. Conf. on Distributed Computing
Systems, 1986, pp. 89-99.

[I21 P. S. Yu, and D. M. Dias, “Concurrency Control
Using Locking with Deferred Blocking,” in Proc. 16” Conf. on
Very Large Data Bases, 1990, pp. 30-36.

753

Proceedings of the 8th International Workshop on Database and Expert Systems Applications (DEXA '97)
0-8186-8147-0/97 $10.00 © 1997 IEEE

