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Abstract 

Existing concurrency control algorithms do not well 
conform to various environments, in the performance 
perspective. Each algorithm has some assumption on the 
conflict characteristic of its execution environment, and 
its performance degrades when the assumption fails. 

rl per-object hybrid scheme integrating two-phase 
locking algorithm with parallel validation technique is 
presented to solve this problem. Read and write accesses 
on each database object are controlled by one algorithm 
at a time. This controlling algorithm can alter during 
transactions are running, in order to enhance the overall 
system performance. In the simulation studv, proposed 
scheme with the proposed algorithm alteration strategy is 
shown to well conform to various execution environments, 
better than both two-phase locking algorithm and parallel 
validation technique. 

1. Introduction 

For obtatining high performance. multiple transactions 
are running concurrently in most database systems. Such 
concurrent executions may bring inconsistency into the 
database. unless the interaction between transactions are 
carefully controlled. Serializable execution of transactions 
is proven to preserve the database consistency. 

So far, several algorithms have been proposed in order 
to control concurrent transactions. The major assumption 
on transaction conflict classifies these algorithms into two 
groups. Pessimistic algorithms including 2-phase locking 
algorithm [7] assume that a transaction tends to conflict 
with others. Conversely, optimistic algorithms such as 
validation techniques [8] assume that conflicts between 
transactions seldom occur. 

The characteristics of concurrency control algorithms 
have been evaluated in various ways [ 1,5,6,9]. It is widely 
accepted that potential deadlock and lock management 
overhead are major defects of 2-phase locking algorithm. 
It, however. performs better than validation techniques 

when transactions frequently conflict with others. Recent 
studies showed that the concurrency control performance 
relies heavily on the significance of resource utilization. 

Database system is utilized for various appication area. 
Concurrency control algorithm embedded in a database 
system thus should be highly adaptable. In this respect, 
integration of several algorithms has been tried. Most 
proposals concentrate on using different algorithms per 
transaction [4,11,12]. The use of algorithms per data 
object was also suggested [lo]. In [lo], They pointed out 
that the per-transaction based strategies fail to sufficiently 
exploit the advantages of each basic algorithm. The idea 
proposed in [lo] does not, however, give direct solution 
for the centralized databases. Furthermore, most of these 
previous works did not give any quantitative evaluation of 
the proposed algorithm’s performance characteristics in 
various execution environments. 

We propose a per-object based integration strategy that 
couples 2-phase locking algorithm and parallel validation 
technique. Generally, each database object has only one 
controlling algorithm at a time. The system dynamically 
determines the appropriate algorithm for each object to 
enhance performance. Transactions do not have to care 
the controlling algorithm for each object. 

Transactions have their private workspaces [2]. They 
execute in four phases: the normal execution phase, two 
check phases, and the update phase between check phases. 
After doing all of its operations in the normal phase. 
every transaction checks its validity in check phases. If it 
fails to validate itself, it dies or kills other transactions to 
keep the consistency of database. Validated transactions 
transfer their execution results to the persistent database 
in their update phases. 

The criterion of choosing algorithm for each object is 
that what algorithm would waste less transaction time. 
Every access on a data object causes the re-estimation of 
mean wasted time for a transaction in accessing that 
object. If the current algorithm is assumed to waste too 
much time, the other algorithm begins to control the 
accesses on that object. Statistical information such as the 
mean transaction execution time, the aborted transaction 
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count, the mean lock duration time. and the blocked 
transaction count are maintained per each object for this 
purpose. 

The remainder of the paper is organized as follows. 
Section 2 describes basic concurrency control algorithms 
used in this paper. Section 3 presents the proposed 
integration strategy. Correctness of our work is shown in 
section 4. Section 5 compares our proposed algorithm 
with the basic algorithms. Section 6 describes related 
works on the integration of heterogeneous algorithms. In 
section 7, we conclude with a discussion. 

2. Basic Algorithms 

Most of existing concurrency control algorithms deal 
with every operation in the same manner. We can classify 
these homogeneous algorithms by their assumption on 
transaction conflict. Pessimistic and optimistic algorithms 
are major classes in this classification. Algorithms in the 
former class assume that transactions are likely to conflict 
with each other. and that these conflicts are serious; the! 
should be resolved immediately. Pessimistic algorithms 
block the execution of conflicting transactions or roll 
them back as soon as any conflict occurs, to prevent or 
avoid non-serializable executions. Conversely, optimistic 
algorithms assume that conflicts seldom occur. This class 
of algorithms does not consider conflicts seriously. In 
general. it lazily detects and recovers executions that are 
non-serializable: it verifies transactions’ validity at the 
end of their execution, then terminates and restarts the 
transactions that cause conflicts. Well-known examples of 
each class are strict two-phase locking algorithm [7] and 
parallel validation technique [S], which we adopt as basic 
algorithms into our work. 

Performance studies have been done to investigate the 
operational characteristics of each algorithm. Empirical 
study with real-life database reference strings has shown 
that optimistic algorithms outperform locking algorithms 
if the I/O costs can be neglected by large buffers [9]. 
Analytic evaluation of concurrency control algorithms has 
claimed that overhead of validation techniques is bigger 
than that of 2-phase locking algorithm [S]. Overheads of 
deadlock detection and resolution are neglected in this 
study, however. Thus, we can conclude that overheads of 
each algorithm are quite comparable. as assumed in [l]. 
Simulation studies [1.6] have shown a surprising result. 
When the conflict rate or the degree of concurrency is low, 
two-phase locking algorithm and validation techniques 
perform similarly. If the degree of concurrency becomes 
high, two-phase locking algorithm works better, when 
resource contention is significant. Validation techniques 
work better with plenty of resources. 

3. Integration Strategy 

Our approach to integrate strict two-phase locking with 
parallel validation technique is described here. The data- 
base system model, the data object access procedures, the 
serializability validation procedures. and the algorithm 
alteration procedures are presented in turn. 

3.1 Database system model 

A database consists of independent data objects. Thus. 
implicit accesses to a data object by accessing another are 
prohibited. If a transaction T accesses a data object s. T 
must contain some operation p[x] on x. 

Each data object has a type which represents its control 
algorithm for the operations on that object. Allowed types 
are L and P that indicates strict 2-phase locking algorithm 
and parallel validation technique respectively. In general. 
Every data object has exactly one type at any given time. 

Private workspace model [2] is used in our work: even 
transaction has its private workspace. and there are three 
types of operations: read. pre-write, and write. 

read ( x ) returns the value of x. 
pre-write ( x, v ) updates the value of s in the 

workspace to be v. 
write ( x ) transfers the value of x from the workspace 

to the database. 
Transactions run in four phases: the normal phase. the 

first check phase, the update phase, and the second check 
phase (Table 1). In the normal phase of a transaction T, 
all read and pre-write operations of T on P-typed data 
objects go with no restriction. The read-set and the write- 
set are maintained for T to keep track of the P-typed data 
objects T has accessed during its execution. T’s operations 
on L-typed data objects generally follow 2-phase locking 
protocol: every read or pre-write operation on an L-typed 
data object x must be preceded by the appropriate lock 
acquisition, unless T has already accessed x under parallel 
validation. The lock table is maintained to manage locks. 

The first check phase begins after all operations of T 
have done in the normal phase. In this phase, the validity 
of T with transactions in their update phases is verified. T 
aborts and restarts its execution if the validation fails: the 
update phase begins otherwise. In the update phase. the 

Execution TVpe of data object 
phases L I P 

IlOtTd 

1’ chsck 

lock, read. 
pre-write 

read, pre-write 

Validation with transactions in their 
update phase 

” p&e 

2”’ check unlock 

write 
Validation with transactions in their 

normal phase 
Table 1. Operations and procedures in each phases 
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function read ( s ); 
if ( s is in read-set or in write-set or x is P-typed ) 

then insert ( x. read-sef ): 
else lock ( x. shared ); 

endif; 
if ( a copy of x esists in the private workspace ) 

then return the value of the copy of x: 
else return the value of the original x; 

endif; 
end: 

procedure pre-write ( x v ); 
if ( s is m read-set or in wrrte-sef or s is P-typed ) 

then insert ( x, wife-set ); 
else lock ( .x exclusive ); 

endif: 
if ( no copy of s exists in the private workspace ) then 

create a copy of s; 
endif: 
value of the copy of x t v; 

end: 

Figure 1. Read and pre-write 

values of updated copies in T’s workspace are transferred 
to the persistent database by write operations. In the last 
phase. which is the second check phase. the validity of T 
with transactions in their normal phases is v,erified. When 
the validation fails, all transactions that conflict with T 
are forced to restart. T completes its execution after the 
validation finishes. 

3.2 Accessing Data Objects 

The read and pre-write operations are shown in Figure 
1. The lock operation is slightly modified so that ‘what 
transaction is blocked when’ information is recorded for 
the object that the lock request is not granted. 

During the unlock operation. this recorded information 
is used to update the mean lock duration. ‘Wasted time by 
block’ information is recalculated then. to decide whether 
it needs to change the control algorithm of the data object. 

The write operation only transfers the value of the data 
object to the persistent database from the local workspace. 

3.3 Validation in Check Phases 

As in the validation techniques. our scheme assigns the 
increasing transactton number to each transaction when it 
starts its first check phase. For each transaction Tj and for 
all transaction T,s that have smaller transaction numbers 
than that of T,. one of the following conditions must hold: 

1. T, completes its update phase before TJ starts its 
normal phase. 

2. T,‘s write-set does not intersect T,‘s read-set, and 
T, completes its update phase before T, starts its 
update phase. 

3. T,‘s write-set does not intersect both T,‘s read-set 
and write-set. and T, completes its normal phase 

before T, completes its normal phase. 
For concurrently running transactions. the condition 1 

does not hold. Thus. the condition 2 or 3 must hold for 
them. In the first check phase, the condition 3 is verified; 
the condition 2 is verified in the second check phase. 

Check phases are synchronized: transactions should 
enter a critical section to perform each check phase. 

When the validation fails in any check phase. restarts 
of one or more transactions occur. Transactions do book- 
keeping jobs before they abort: for each data object that 
cause a restart, ‘when transaction aborts’ information is 
recorded. ‘Wasted time by abort’ information is again 
calculated to determine whether it needs to change the 
control algorithm. 

3.4 Control Algorithm Alteration Strategy 

procedure first-check-phase ( T ); 
valid t true; 
conflict-set C null; 
for each transaction U that is in its update phase do 

rs t intersection ( read-set of T. wrrte-set of U ); 
ws t intersection ( write-set of T. wrrte-set of U ); 
if( either rs or ws is not null ) then 

valid t false; 
conflict-set t conflict-set u rs v ws; 

endif; 
done: 
if ( valid is false ) then 

for each data object x in conflict-set do 
record transaction abort time for s: 
recalculate the wasted time by abort: 
make decision of algorithm change; 

done; 
unlock all locks possessed by T: 
T aborts; 

endif; 
end; 

procedure second-check-phase ( T ): 
for each transaction U that is in its normal phase do 

valid t true; 
rs t intersection ( read-set of U, write-set of T ); 
if ( rs is not null ) then 

valid c false; 
for each data object x in rs do 

record transaction abort time for x; 
recalculate the wasted time by abort; 
make decision of algorithm change; 

done; 
endif: 
if ( valid is false ) then 

unlock all locks possessed by U: 
U aborts; 

endif; 
done; 
unlock all locks possessed by T; 
update mean transaction execution time; 
T commits; 

end: 

Figure 2. Check phases 
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procedure change-Corn-L-to-P ( x ); 
for each transaction T which possesses the lock on x do 

case lock mode of x of 
shared: insert ( x, read-set of T ); 
exclusive: inseri ( x, read-set of T ); 

insert ( x wrrfe-set of T ); 
end; 

done; 
lock mode of x t none; 
clear the information of x about lock-possessing T’s; 
typeofxtP; 

end; 

procedure change-from-P-to-L ( x ); 
clear the information of x about lock-possessing T’s; 
for each transaction T which have accessed x do 

give T an exclusive lock on x; 
done; 
lock mode of x t exclusive; 
typeofxtl; 

end; 

Figure 3. Algorithm alteration procedures 

Concurrency control algorithms degrade the system 
throughput by wasting execution time of transactions. For 
example, transactions waste their execution time when 
they are blocked under strict 2-phase locking algorithm, 
while transactions waste their execution time when they 
are aborted under validation techniques. We adopt these 
wasted time measures to evaluate the system status and to 
select an appropriate algorithm for each data object. 

Let rL be the wasted time by strict 2-phase locking, and 
zp be the wasted time by parallel validation technique. 
Then, these values can be estimated like this: 

zL z mean lock duration x #blocked T’s 
zp z mean transaction execution x # aborted T’s 
If both values are known, it is quite natural to select 

the control algorithm for a data object by comparing these 
two measures. However, it is impossible to know the both 
simultaneously, as only one algorithm works at a time. 

Thus, some threshold value is used in the selection of 
algorithm. When the magnitude of the measure currently 
considered exceeds a predefined threshold value, control 
algorithm change occurs. 

Algorithm alteration procedures are shown in Figure 3. 
Nore that information for data objects already accessed 
under the parallel validation technique, contained in read- 
set and write-set of transactions, remains unchanged after 
the algorithm change. This trick allows transactions see 
the control algorithm for each data object invariantly. 

4. Correctness of the proposed strategy 

We describe the proof that our scheme guarantees the 
serializable transaction execution. The proof is based on 
the serialization graph (SG) for an execution history. It is 
proven that a history H is serializable if and only if its 

serialization graph SG(H) is acyclic [3]. We present a 
descriptive proof. 

Lemma 1. Let H be an execution history of committed 
transactions generated by our algorithm, and suppose that 
T; + Tj is in SG(H). Then, the first check phase of Ti 
precedes the first check phase of TJ. 

Proof Since T, -+ T,, there must exist conflicting 
operations p[x] E T, and q[x] E TJ respectively, such that 
p[x] precedes q[x]. There are 4 different cases. 

Case 1: Suppose that p[x] and q[x] are all under strict 
2-phase locking algorithm. As under the 2-phase locking 
algorithm, the unlock on x in Tj precedes the lock on x in 
T,. As the first check phase of every transaction precedes 
all unlock operations and succeeds all lock operations, the 
first check phase of T, precedes that of T1. 

Case 2: Suppose that p[x] and q[x] are under parallel 
validation technique. Assume, by way of contradiction, 
that the first check phase of T, precedes the first check 
phase of T,. Then, the transaction number of TJ precedes 
that of T,, and one of the following conditions must hold: 

1. T, completes its execution before T, begins. 
2. TJ’s write-set does not intersect T,‘s read-set, and 

TJ’s all operations precede Ti’s write operations. 
3. T,‘s write-set does not intersect both Ti’s read-set 

and write-set, and Tj’S read operations precede 
T,‘s write operations. 

This means that, for conflicting operations s E T, and t 
E T,, s must precede t. It contradicts that p[x] precedes 
q[x]. Thus, the first check phase of T, precedes that of TJ. 

Case 3: Suppose that q[x] is under parallel validation 
technique. and that p[x] is under strict 2-phase locking 
algorithm. If Ti and Tj are concurrent, this case cannot 
happen. Thus, Ti should precede Tj, resulting that the first 
check phase of Ti precedes that of TJ. 

Case -I: Suppose that p[x] is under parallel validation 
technique. and that q[x] is under strict 2-phase locking 
algorithm. The lock on x in T, is preceded by the end of T,. 
Then. the first check phase of T, precedes the lock on x in 
Tj, which precedes the first check phase of TJ. 

Lemma 2. Let H be an execution history of committed 
transactions generated by our algorithm, and let Ti -+ TZ 
-+ . . . + T, be a path in SG(H), where n > 1. Then the 
first check phase of T, precedes the first check phase of T,. 

Proof The proof is by induction on n. The basis step of 
induction, for n = 2, follows immediately from Lemma 1. 
For the induction step, suppose the given lemma holds for 
n = k for some k > 2. We will show that it holds for n = k 
+ 1. By the induction hypothesis, the path Ti + T2 + .*. 
+ Tk implies that the first check phase of Ti precedes the 
first check phase of Tk. But, by Tk + Tkil and Lemma 1, 
the first check phase of Tk precedes the first check phase 
of Tk+, Thus. the first check phase of T, precedes the first 
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check phase of Tk+, , as desired. 
Theorem. Every history H generated by our algorithm 

is serializable. 
Proof Suppose that SG(H) contains a cycle Tr + T2 -+ 

. . . + T, + T, , where n > 1. By Lemma 2, the first check 
phase of T, should precedes the first check phase of itself. 
which is impossible. SG(H) thus has no cycles and so H is 
serializable. 

5. Performance 

This section describes the evaluation of the proposed 
scheme versus the basic algorithms, strict 2-phase locking 
algorithm and parallel validation technique. We adopted 
the performance model proposed in [ 11. Simulations are 
performed in varying the number of resources reflecting 
the environmental variety. 

Our simulation parameters reflect that the database 
contains 1000 data objects, that transactions are issued 
from 200 terminals. that the transaction inter-arrival time 
follows the exponential distribution with mean = 5 sec., 
that transactions may read 4 - 20 data objects and update 
20 - 30% of them, and that disk I/O time for a data object 
is 16 ms, while CPU time for a data object is 2 ms. The 
size of database is taken to be small enough to observe 
frequent conflicts. As in [l], the processing overhead of 
algorithm itself is neglected. 

Our algorithm with threshold equal to three times of 
the mean transaction execution time is evaluated. Strict 2- 
phase locking algorithm and parallel validation technique 
are also evaluated for comparison. Initially, data objects 
are all L-typed in our scheme. 

In order to vary the execution environment, we change 
the degree of concurrency and the number of resources. 
Considered degrees are 5, 10, 25, 50, 75, 100, 150, and 
200. We assume that there are N CPUs and 2N disks, and 
vary N from 1 to 8 by doubling it. The throughput is used 
as the performance metric. Each simulation consists of 20 
batches, each of which is a run of 50 seconds succeeding a 
run of 20 seconds. Thus, the total simulation time is 1000 
seconds. 

Figure 4 shows the simulation result with N = 1. For 

Figure 4. Throughput with 1 CPU and 2 disks 

14 - 

12- 

6- 

Figure 5. Throughput with 2 CPUs and 4 disks 

each algorithm, the throughput curve indicates thrashing; 
as the degree of concurrency increases, the throughput 
increases first. then reaches a peak, then finally degrades. 

Strict 2-phase locking algorithm outperforms parallel 
validation technique in this case. The performance of our 
scheme is quite similar to that of strict 2-phase locking 
algorithm, as the algorithm change seldom occurs. 

When the system has 2 CPUs and 4 disks. the behavior 
of each algorithm is fairly similar to that in the previous 
case (Figure 5). The penalty of the resource contention is 
reduced, however. Our scheme slightly outperforms strict 
2-phase locking algorithm as the degree of concurrency 
increases, verifying that dynamic allocation of algorithm 
works well. 

Figure 6 shows the throughput curves with N = 4 and 
N = 8. The resource contention is much lowered. Parallel 
validation technique outperforms strict 2-phase locking as 
the penalty of wasting resource is lighten. Our scheme 
works remarkably better than both the basic algorithms. 
While the parallel validation technique is a better strategy 
globally, strict 2-phase locking algorithm may outperform 
for some data objects. The simulation result verifies this 
expectation sufficiently. 

6. Related Works 

The need for a highly adaptable concurrency control 
algorithm has driven several studies on the integration. 
Several r-w and w-w synchronization techniques were 
integrated in centralized database systems [4]. Two-phase 
locking algorithm and serial validation technique were 
merged in distributed database environment [ 111; every 
transaction is typed either locking or optimistic. These 

Figure 6. Throughput with N = 4 and N = 8 
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works concentrated on integration and correctness. 
The concept of per-object heterogeneity was introduced 

in [IO]. Data objects are typed. as well as transactions. 
either locking or optimistic. While the concepts are quite 
similar. this work utilizes time interval. which is useful in 
distributed database systems. but not useful in centralized 
database environment. 

A modification of two-phase locking algorithm with 
optimistic philosophy was proposed in [12]. Under this 
scheme. transactions can access some predefined amount 
of data objects without locks, but it needs to acquire locks 
for accessed objects. in order to access more objects. 

7. Concluding Remarks 

Our goal for this work was to propose a concurrency 
control scheme based on strict 2-phase locking algorithm 
and parallel validation technique. In order to satisfy our 
goal, we proposed per-object based algorithm integration 
strategy. 

The control algorithm for each object can change when 
transactions are running, but the change is hidden to 
running transactions for the synchronization purpose. 
This enables the type of each object to be transaction- 
consistent; every transaction considers that data objects 
are static-typed. 

The key idea of integrating both algorithms is to assign 
the transaction number when all of the necessary locks are 
acquired. The transaction number problem with parallel 
validation technique [S] was also solved in our scheme by 
separating validation job into two phases. 

The rate of conflict is not a good measure to estimate 
the system state. As we have seen, both algorithms show 
the similar behavior when the rate of conflict is low. We 
have developed a new measure based on the wasted time: 
each algorithm waste some transactions’ execution time 
in synchronizing the running transactions. The control 
algorithm for a data object changes when the wasted 
transaction time in accessing that object exceeds some 
threshold value. The evaluation we have performed with 
this measure shows that our measure works fine. Proposed 
algorithm outperforms two basic algorithms we have used. 

Algorithm change procedure and the storage overhead 
are major defects of our scheme. Using lock table instead 
of read-set and write-set may reduce both the overhead of 
algorithm changing and storage overhead. 

Additional information essential to maintain the type 
of data objects dynamically is also a large space overhead. 
The number of data objects in real-life databases reaches 
to near several millions or more, and it would be difficult 
to maintain only types in main memory. Maintaining only 
the types of data objects which are currently being used is 
a feasible solution to this problem. Newly accessed data 

object can be treated by using a default type. 
Only the recent conflicts are considered in our scheme, 

in order to keep up quickly with the change of the conflict 
tendency. It is not clear how to define the recentness, but 
it seems fair to let the recentness interval be the multiple 
of mean transaction execution time, since transactions are 
sensitive only to the events during their life time. 
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