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Abstract— In this paper, a sliding mode con-
troller with function augmented sliding surfaces
is proposed for the control of robot manipula-
tors. By augmenting a function which satisfies
some conditions, a sliding surface can be de-
signed more generally than conventional method.
The proposed controller always guarantees the
existence of the sliding mode. Therefore, the
overall system has no reaching phase and shows
the robust performance all the time in the pres-
ence of parameter variations and external distur-
bances. Moreover, the global exponential stabil-
ity of the overall system is guaranteed and the
tracking error is uniformly continuous.

The efficiency of the proposed method has
been demonstrated by simulations for a trajec-
tory tracking control of a two-link robot subject
to parameter uncertainties and external distur-
bances.

I.

The robustness to variable payloads, torque distur-
bances, and parameter variations has been increasingly
demanded on the development of modern industrial ma-
nipulators. As one of the control method for a trajectory
tracking control of robot manipulators, the sliding mode
control scheme has been received an increasing attention
(1]

The design of a sliding mode control system, one of
the robust control techniques, is based on the bounds
of unknown parameters and uncertainties, and the con-
trol law is constructed in order to force the system state
to stay on the predetermined sliding surface. Once the
system is in the sliding mode, the system response is
thereafter independent of parameter variations and dis-
turbances. Therefore, the prescribed transient response
can be obtained in the sliding mode regardless of system
uncertainties. However, since the initial state may not
be on the sliding surface, there exists the period called
a “reaching phase” until the system state reaches the
sliding surface. During this reaching phase, the system
response is sensitive to parameter uncertainties and ex-
ternal disturbances.

In order to overcome this reaching phase problem,
Slotine and Sastry suggested a time-varying sliding sur-
face in the state space by imposing the constraint that
the initial errors be zero in tracking control [2]. But,
this situation is not general because the initial states of
the actual system can be located arbitrarily in the state
space.
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A rotating sliding hyperplane was introduced by Ha-
rashima, et al. to guarantee the sliding mode occurrence
throughout the entire response [3]. It deals mainly with
the case that the initial state is in II or IV quadrant.
However, it is difficult for this scheme to apply if the
initial state is in I or III quadrant.

Choi, et al. proposed a moving sliding surface [4].
The proposed sliding surface was shifted to the initial
condition and then moved/shifted until the surface cross
the origin. Thereafter, it rotated to increase the error
convergence speed. However, these mechanisms were
performed in the discrete way. Thus, the algorithm is
not rigorous from the mathematical viewpoint.

Therefore, a sliding mode control system with func-
tion augmented sliding surfaces is proposed in this paper
to remove the reaching phase wherever the initial state
is. By augmenting a function which satisfies some con-
ditions, the reaching phase is successfully removed and
the sliding surface can be designed more generally than
the case that an exponentially decaying function is aug-
mented [5]. Therefore, the overall system is always in
the sliding mode and shows the robust performance at
all times in the presence of parameter variations and
external disturbances. Furthermore, the global expo-
nential stability of the overall system is guaranteed and
the tracking error is shown to be predetermined.

The validity of the proposed scheme has been shown
through the simulation results.

II. PRELIMINARIES

Assumption 1 h(s) € R(s) 1s ezponentially stadle
and strictly proper, where h{s) represents the Laplace
transformed form of the corresponding tmpulse response
h(t).

Assumption 2 g : Ry — R, g € C*[0,00), § € L™
and g € LP N L™ for some p € [1,00), where C*[0, 00)
represents the set of all first differentiable continuous
functions defined on [0, 00).

Theorem 1 Let g, h: Ry — R. If g € C'{0,00), g €
LP N L™ and § € L™ for some p € [1,00], then y =
hxge LY NL™, y is untformly contsnuous and y — 0 as
t — oco.

Proof g € L¥ n L™ implies that || ¢ ||ec< o0 and
llgllp< 0o. And cleary, h € L'. Therefore, the following
two facts can be derived.

i

lg*hllo < llglleoliliy < oo,
g«hlly < llglls Ihlly < oo
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From the above two facts, y = g« h € LP N L*™.
Since ¢ € L*, || § floo< o0. And clearly h € L*.
Therefore, the following inequality can be derived.

lgllo = Hg*h+g(0)h(t) =
< Ngxhllo + [9(0)h{t)]lo
< Mlglleo iR] + 119(0)A(2) oo
< oo.

This implies that § € L*. Hence, y is uniformly con-
tinuous.

From the above results, y = g+ h € L* N L™ and y
is uniformly continuous, one can conclude the following
result.

y—0 as t — co.

III. MODELING OF ROBOT MANIPULATOR

The dynamic equation of an n degree-of-freedom robot
manipulator can be derived using Lagrangian formula-
tion as

M(q)§+ C(q,4)d + G(g) = v+ d, (1)

where M(q) is an n x n inertia matrix, C(q,4) is an
n x n matrix corresponding to Coriolis and centrifugal
factors, G(gq) is an n X 1 vector caused by gravitational
force, d is an n x 1 bounded disturbance vector, ¢ is an
n x 1 joint variable vector, and « is an n x 1 input torque
vector. o

Let us define each matrices as M = M + AM,
C=C"+AC, and G = G’ + AG, where “” denotes
the mean value and “A” denotes the estimation error.
Assume that the AM,;, AC,;, and AG, are bounded
by M7 ,CT, and G respectively as |AM;;| < M7,
|AC,| £ C}, and |AG;| < G, where “m” denotes the
maximal absolute estimation error of each element, and
i, 7 = 1,2,---,n. It is also assumed that |d;| < 47",
where 1 = 1,2,-- -, n.

1V. DESIGN OF CONTROL SYSTEM

Let us define the trajectory tracking error as

e(t) = q(t) — qa(t),

where gq(t) represents the desired trajectory. And we
choose a function augmented sliding surface as

s(t) = €(t) + Ae(t) — g(t), (2)

where s, g € R", A = diag(A1, A2, -, An) € R"*",
9i(0) = €:(0) + A;ei(0), each gi(t) is chosen such that
Assumption 2 in the section 2 holds, and 1 =1, 2, -+,
n. From the above definition, it is clear that s(0) = 0.

Let us define the following positive-definite function
as a Lyapunov function candidate:

V= %STMS. (3)

Differentiating (3) with respect to time and adopting
the skew-symmetricity of M(q) — 2C(q, ¢), we have

V = sTMs+sTCs
sT (M§ — M§a + MAé — Mg + Cs)
sT(u+d—G+M(Aé - §—§a)+C (s — §)j4)

Il

Therefore, the equivalent control law is
eg = ~M (Aé—§—G)~C (s—4)+G . (5)
Now, we introduce the control input such as
u = U — Kesgn(s), (6)

where “e” means the element-by-element multiplication
of two vectors, and

K = M™|Aé—§—gaf +C™|s—¢|+GC™ +d™ + 1,
n = [Tll, N2, n"]T' Y],’>0,

v sgn(sa) |7,

1 if >0
sgn(s;) = 0 if si=0, =12 - n,
-1 if s <0

and the absolute of a vector denotes the vector
whose element has its absolute value, ie. |z =
[ |21!, %Zzl. s !znl ]T'

Using the above control law, we can derive a following
theorem about the sliding mode existence.

Theorem 2 For the robot manipulator (1) with the
control law (6), the system is in the sliding mode at all
times.

Proof By inserting (6) in {4), we can obtain the
following inequality:

Vo= T {»MU (Ré—§—da) - C (s~ @)+ G
~(M™ A6~ § = Ga| + C™ |s = G+ G™ +d™ + n)
esgn(s) +d—~ G+ M(Aé - §—da)+C (s~ q) }

= T {(M - M Y(Aé - da) + (c.' . c) (s - q)
M™ A G Gl o sgn(s)  C™ s~ gl # 9n(s)
+(G“ —G)—G™esgn(s)+ d—d™ e sgn(s)
~nesgn(s)}

< - Zﬂ-’lsl"-

[0

Therefore, V is a Lyapunov function. From the above
inequality, it is clear that v < 0, and V=0 only for
s = 0. Additionally, it is easily known from (2) that
s{0) = 0. Therefore, the Lyapunov function V(t) is
equal to zero at all times. This also implies that
§=0 v t>o0. (7
Thus, the system is forced to stay in the sliding mode
at all times. n
From the above theorem, we know that s.(t) = 0 for
all 7. Hence, the sliding surface (2) can be rewritten as

vV t>0. (8)

Thus, the trajectory tracking error e;(t) can be thought
as an output of the first-order low pass filter with an in-
put signal g;(t). Since the above low pass filter is clearly
exponentially stable and strictly proper, Assumption 1
is guaranteed. Hence, the following theorem can be de-
rived for the stability.



Theorem 8 For the robot manipulator (1) with the
control law (6), the overall system s globally asymptot-
ically stable.

Proof 1t is sufficient to show the stability for some 1.

Obviously, the low pass filter (% + /\.) is exponen-
tially stable and strictly proper. Hence, Assumption 1
is guaranteed because (s) = 45, - And we have chosen
the function, gi(t), such that Assumption 2 is guaran-
teed. In addition, the trajectory tracking error, e;{t},
can be regarded as an output of the low pass filter with
the input function g;(t) as mentioned above.

Therefore, the theorem can be proven directly from
Theorem 1. [ ]

Furthermore, the following theorem can be derived
for more specific function g(t).

Theorem 4 For the robot manipulator (1) applied by
the control input (6) with g(t) bounded by some ezponen-
tially decaying function, the overall system is globally ez-
ponentially stable.

Proof The proof is so obvious. So, we omit the
proof. | ]

V. DESIGN OF AN AUGMENTED FUNCTION

In the previous section, a function augmented sliding
surface has been proposed in order to remove the reach-
ing phase problem. Including the proposed method in
the previous section, almost all of the previous works
proposed to overcome the reaching phase problem have
used an initial condition of the state vector. The as-
sumption that the initial condition is available is not an
restrictive condition because the measured and/or esti-
mated data for the state vector can be obtained at each
sampling time. Thus, the tnitial condition is the data
obtained when the control system starts to operate. Es-
pecially, for the robot manipulators, one can get the
position and the velocity data at each sampling time.

The augmented function, g(t), can be arbitrarily de-
signed if Assumption 3 is guaranteed. One of the simple
choice of g(t) is an exponentially decaying function [5].

Let us rewrite the proposed function augmented slid-
ing surface (2).

s(t) = é(t) + Ae(t) — g(t).

Let us define the desired decaying trajectory for the
tracking error as d,,. Then, one can arbitrarily de-
sign/plan the trajectory so that the trajectory of the
tracking error decreases to zero in finite time. Then,
the augmenting function g(t) can be designed as follow-
ing.

g(t) = der (t) + Ader(8). (9)

Generally, the desired decaying trajectory for the tra-
jectory error d¢, is designed as a continuous piecewise-
differentiable function with a compact support. Thus,
the following assumption is followed.

Assumption 3 The dessred decaying trajectory for
the trajectory error dy (t) is a continuous piecewise-
differentiable function with a compact support satisfying
following conditions.

de,{0) = €(0), d..(0) = é(0) (10)

Remark 1 If the augmented function g(t) is designed
as in {9) and the d..(t) satisfies Assumption 3, then the
overall system s globally ezponentially stable.

Proof Obviously, all the functions satisfying As-
sumption 3 is bounded by some exponentially decaying
function. Therefore, the result comes directly from The-
orem 4. a

Remark 2 If the augmented function g(t) is designed as
in (9), then the overall system always shows invariance
property to parameter uncertainties and ezternal distur-
bances and the robot’s joint trajectory can be described in
advance.

Proof  From the definition of the augmented sliding
surface (2) and the augmented function (9), s(t) can be
rewritten as follows:

s(t) é(t) + Ae(t) — g(t)

§—qa+ A(q - ‘Id) - (litr + Ad!v)
§—da—der+ Alg — qa — duy)

= éir + A€y, (11)

where, e;r = ¢—(gqq+de,). Since d,,(t) satisfies Assump-
tion 3, ee(0) = é¢,(0) = 0. Therefore, s(t) =0Vt >0
and ¢(t) = qu(t) + di. () Vt > 0. ]

If the augmented function g(t) is divided into two
parts as in (9), the augmented function can be easily
designed because the system trajectory is totally gov-
erned by g(t) = qa(t) + der(t).

VI. SIMULATION RESULTS

The simulation has been carried out for a two degree-
of-freedom robot manipulator model used by Yeung and
Chen [6]. Parameter values are also the same as those
of [6].

Figures 1~4 show the results of the trajectory track-
ing control of the robot manipulator. Figure 1 shows
the sliding surface function s(¢) for the joint 1 and 2
when the conventional control law is applied. Figure
2 shows the same function for the case that the pro-
posed control system is employed. As can be shown in
Figure 1, the sliding mode has occurred for the joint 1
after about 2 second. However, for the proposed control
scheme, the system is always in the sliding mode (see
Figure 2). Therefore, the overall system has the robust
performance in the presence of model uncertainties and
external disturbances.

The following two figures show the performance of the
conventional control system and the proposed method in
the presence of model uncertainties and external distur-
bances. Figure 3 shows the tracking error transients of
joint 1 when the conventional control method is used,
where one of two curves represents the error transient
in the case of no disturbances and the other curve repre-
sents the same one when disturbances are added. Ascan
be shown in this figure, the system performance is de-
graded by external disturbances when the system state
is in reaching phase. On the other hand, since the sys-
tem is always in the sliding mode when the proposed
control scheme is employed, the tracking error does not
be affected by external disturbances as can be shown in
Figure 4. It implies that the curve shape of the track-
ing error can be predetermined from (8) regardless of
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Sliding surface function

the existence of parameter uncertainties and external
disturbances.

VII.

In this paper, a sliding mode control system with func-
tion augmented sliding surfaces was proposed for the
tracking control of robot manipulators. By augmenting
a function which satisfies Assumption 2, a sliding sur-
face can be designed more generally than the conven-
tional method. Since the proposed function angmented
sliding control scheme always guarantees the occurrence
of the sliding mode, the overall system has no reaching
phasge and shows the robust performance all the time in
the presence of parameter variations and external dis-
turbances. Global exponential stability was also guar-
anteed for the overall system.

CONCLUSIONS
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Fig. 1. Sliding surfaces (Conventional Case).
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Fig. 2. Sliding surfaces (Proposed Case).
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Fig. 4. Tracking error (Proposed Case).

)7
i



