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Abstract 
Using neural network to identify a function in the 

dynamic equation brings about additional difficulties 
which are not generic in  the other function approzi- 
mation problems. First, training samples can not be 
arbitrarily chosen due to hard nonlinearity, so are apt 
to be nonuniform over the region of interest. Second, 
the system may become unstable while attempting t o  
obtain the samples. 

This paper deals with these problems in continuous- 
time systems and suggest an effective solution, which 
provides stability and uniform sampling b y  the virtue 
of supervisory controller. The supervisory control al- 
gorithm can be applied to the robot system dynamics. 
Of course the algorithm can be applied to the n-th or- 
der robot system, the simulation result will be given for  
the simple two link robot. 

1 Introduction 
In recent years, neural network has found wide 

applications in areas such as system identification, 
modeling and realization, signal decomposition and 
generation, pattern classification, adaptive filtering, 
etc.  One of the most significant backgrounds of these 
trends is the function approximation capability of neu- 
ral network. The problem of approximating a function 
of several variables by neural network has been stud- 
ied by many authors. They proved various kind of 
neural network structure can be an universal approx- 
imator of the functions in C[D], the set of continuous 
real-valued functions on a compact space D 
in LP[D , consisting of all real measurable Le 
integrab 1 e functions[3]. 

Besides the classical problems of neural network 
mentioned above, additional problems arise in the ap- 
plications for dynamic systems. In the early days of 
neural network, the applications were primarily in the 
area of pattern recognition and hence pertains to static 
systems. Since dynamics constitute an essential part 
of all practical systems, it was tried by many authors 
[4\ to use neural networks as components in dynami- 
ca systems. The various designs of control architec- 
tures are studied and extensive simulations are carried 
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out to show the models proposed are particularly ef- 
fective for the identification and control of nonlinear 
systems. However, much of the work is of a heuristic 
nature. Narendra et al. 51 presented a first attempt 

opments and tried to propose a general methodology 
by which control methods based on neural networks 
can be made more rigorous. 

In most of the papers which seek for the general 
methodology in using neural networks for dynamic 
systems, the efforts are mainly contributed to  the sta- 
bility analysis. These analyses are based on the as- 
sumptions endowed to systems, in the other words, if 
neural network is applied to a design methodology, the 
function in the system should be examined whether it 
satisfies the prescribed assumptions or not. But, it 
does not seem always possible to  judge the satisfac- 
tion of such assumptions proposed by Narendra [5 ] .  
Hence, it is needed to relax the stringent assumptions 
to the simplified ones such as the boundedness of the 
function, etc.  

This paper deals with the problem of uniform sam- 
pling as well as the stability problem in certain class of 
continuous time systems. The problem of the uniform 
sampling is issued by Narendra [ 6 ] .  They proposed 
the successive identification and control strategy to  
solve the problem for certain class of discrete-time 
system. We adopted the supervisory controller which 
Wang (71 developed for his fuzzy adaptive controller. 
And we modified it to apply to the robot dynamics 
together with neural network identger. If the func- 
tion in the dynamic equation is bounded, the supervi- 
sory controller guarantees the bounded tracking error. 
Therefore, once the function in the dynamic equation 
is identified along a uniform state trajectory preserv- 
ing the stability with the supervisory controller, any 
tracking control along the same path can be success- 
fully performed. 

2 Supervisory Control Algorithm 
In this section, supervisory control algorithm is in- 

troduced to provide the bounded tracking error while 
exploring the region of interest along the path desig- 
nated by the desired trajectory, z d ( t ) .  Cause a term 

to relate the experimenta i studies to theoretical devel- 
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uc(t) is remained undesigned in supervisory control al- 
gorithm, any kind of control scheme can be adopted to 
generate uc(t). We use feedforward neural network to 
identify a function which handles the system dynam- 
ics. With this identifier, classic PD-type controller 
is also working in uc(t)  to help the supervisory con- 
troller. 

where A and b are the controllable canonical form ma- 
trices. Define V = ix :  Px,  where P is a symmetric 
positive definite matrix satisfying the following Lya- 
punov equation. 

A ~ P + P A = - Q  (8) 
The target system equation for which supervisory 

control algorithm will be designed is given by the equa- 
tion of motion 

Jn) = f ( x )  + bu (1) 

where dn) is the n-th derivative of x, x = 
[z, 3, , z("-')IT , z, b ,  U E %, and f is an unknown 
mapping. 

And the followings are assumed to be valid in our 
analysis. 

Assumption 1 The function f in  (1) should be 
bounded, 

If(x) I I P ( X )  for v x  E 9" (2) 

where Q is a positive definite matrix. 

Lyapunov's direct method. 
Now, the following theorem is derived based on the 

Theorem 1 Consider the system described b y  (I), 
satisfying Assumption 1 - 2, and subject to control 
given b y  

U = U, + U, 
and 

(9) 

where I = 1 if V > VM and I = 0 otherwise, and 
VM > 0 is a constant specified b y  the designer. 
Then, V < VM as t -+ 00. 

Assumption 2 The state vector 
x = [x, 5 , .  , in  (1) is  measurable. 

Because supervisory control algorithm is needed to 

changed into the dynamics of tracking error. xd is the 
desired trajectory and let the error vector x ,  = x-xd ,  
then the system can be controlled with the following. 

assure the boundness of tracking error, (1) should be Proof The derivative OfV along the system trajectory 
becomes 

1 
U* = , [ - f (x )  + zp'( t )  - kTxe] (3) 

1 
where the gain k = [kl, kz, . . . , knlT is chosen to make I -,xTQxe + IxTPbl(lu*I + I u c l )  

+x: Pbu, (11) 
the polynomial h(s)  = s(") + k , ~ ( ~ - ' )  + . . . + kl be 
a Hurwitz. Applying (3) to (1) renders the system 
asymptotically stable, but this control input can not 
be implemented since f ( x )  in U* is unknown. This 
impractical input, U*, just helps the conversion of (1) 
to tracking error dynamics. 

The design of the supervisory controller is based on 
Lyapunov's direct method. Suppose that the input, 
U, is the addition of the neural network controller, 
U,, which will be designed later, and the supervisory 
controller, U,, that  is 

U = uc + U, 

By the supervisory control, U , ,  when V > V M ,  V be- 
comes 

1 1 
V I -axrQxe + lx:Pbl[,(l.fl- fu ) ]  

(12) 
' T  5 --X, Qx, < 0 
2 (4) 

(5) 

Substituting (4) to (l), (1) becomes So, V < VM as t -+ 00. 

0 

U, can be implemented with the knowledge of Iu,I 
which are not specified in the context of the proof. 
Therefore any kind of controller can be a candidate 
for U , .  And, the supervisory control U, in Theorem 1 
is zero, i .e. ,  U = U , ,  if V is smaller than V M .  So to 
speak, U, takes a rest as long as U, does his job well, 
but becomes activated to push the error vector inside 
the bound, if U, fails to make V < VM. 

~ ( ~ 1  = f ( x )  + b(uc + us) 

By subtracting bu' from both sides of (5), the equation 
of error is obtained: 

zp) = -kTX, + b(uc + U, - U*) (6) 

or equivalently in vector form, 

Xe = A X ,  + b(u, + U, - U*) (7) 
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3 Identification and Control Using 
SCA 

Instead of the infeasible control input U* of (3) ,  the 
controller which consists of neural network identifier 
and PD-type controller is used in our identification 
procedure: 

1 
b 

U, = -(-Nf + zp) - kTx,)  

where N j  takes the place of f in (3). Of course any 
kind of control scheme is available for the candidate of 
U,, controller of (13) with simple FNN in it is chosen 
in this paper. It is also obvious that with the help 
of supervisory controller, U,, the system controlled by 
U, does not lose stability even in the case the shape of 
Nf is f a r  from that of f. 

Another merit of using supervisory controller is the 
fact that neural network is trained within the specified 
region about the desired trajectory. The identification 
along the desired trajectory is very efficient for the 
task of following the desired trajectory. The uniform 
sampling over the range of neural network input, can 
not be achieved if we arbitrarily choose the desired 
trajectory. Generally in tracking control of high order 
systems, the uniform sampling is not available. But 
the modified supervisory control algorithm which will 
be suggested in the next section, can guarantee the 
uniform sampling for the regulation control of robot 
dynamics. 

As iteration goes over and over, Nf is trained by 
the samples from f with back propagation algorithm, 
and finally cancels out f .  If the networks becomes 
sufficiently accurate to  verify the cancellation, then 
the error is described by 

, so that the system is controlled to be asymptotically 
stable. 

Of course if we set V u  to  zero, the error is not only 
bounded but also asymptotically stable. However, this 
control input resembles the relay control of VSC, so 
control effort is excessive and the chattering occurs. 
Combining the supervisory control and PD-type con- 
trol with neural network identifier, such problems can 
be eliminated. 

Simulation : In this example, we consider the Duff- 
ing forced oscillation system: 

51 = 22 

x2 = -0.121 - z; + 12cos(t) + u( t )  (15) 

Without control, i . e . ,  u( t )  = 0, the system is chaotic. 
The tra'ectory of the system with u( t )  = 0 is shown 
in the ( z l , za )  phase plane in Fig.1 for initial con- 
dition q(0) = z~(0) = 2. We now use our super- 
visory control algorithm to track the reference tra- 
jectory z d ( t )  = sin(t). We choose kl = 1, k2 = 2, 
Q = diug[lO, lo], VM = 1, and fU = 12 + 1~11~.  

Of course the system described by equation 15) is 
not autonomous. f is a function of x and t. &here- 
fore we choose the remainder when t is divided by the 
revolution period as one of the input variables to Nf. 
Fig.2 shows the tracking control along the unit circle 
at the revolution of 1, 200, 1000 times. Fig.3 depicts 
the approximation of f by Nf a t  the first revolution. 
In Fig.4, the approximation is close enough to  cancel 
the nonlinearty, so the system is no longer nonlinear 
system. 

In our supervisory control algorithm, it is necessary 
to select a sufficiently small VM. If VM is too big, 
the path which can be taken maintaining V < V M ,  is 
diverse that the identification is not efficient. 

4 Application of the SCA to Robot 
Dynamics 

The robot dynamics can be described by the fol- 
lowing equation. 

M(q)ii + N ( q ,  4 = 7 (16) 

where M ( q )  is an inertia matrix and N ( q ,  q) includes 
centrifugal, Coriolis, and gravitational force. To apply 
the supervisory control algorithm, the following as- 
sumptions should be valid for the dynamics described 
by equation (16). 

Assumption 3 Inertia matriz M ( q )  i s  known, i.e., 
all uncertainties belong to N ( q ,  q ) .  

Assumption 4 The state vector q , q  an (16) is meu- 
surable. 

Besides the assumptions above, robot dynamics has 
following property. 
Property 1 In robot dynamics described by (16), 
there exist CO, c 1  > 0 such that 

Define F ( q , q )  = -M- ' (q )N(q ,  q )  and U = M - ~ T ,  
then the equation (16) is changed to, 

q = F(q,  q) + U .  (18) 

To induce the tracking error dynamics, define qd is 
the desired trajectory, and let the error vector qe = 
q - qd, then the robot system can be controlled with 
the following control input. 

U* = - F ( q ,  q )  + gd - Ke (19) 

where eT = [qr (i:] is the new error vector and K = 
[K, Kz] is chosen to make the matrix 

0 [ -K1 4 2  ] 
have the ei envalues in the left half plane. Applying 
(19) to (188 renders the system asymptotically sta- 
ble, but this control input can not be implemented 
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since F ( q , i )  in U* is unknown. This impractical in- 
put, U*, just helps the conversion of (18) to  tracking 
error dynamics. Now, Suppose that the input, U, is 
the addition of the neural network controller, U,, and 
the supervisory controller, uu, that is 

U = U, + U, (21) 

(22) 

Substituting (21) to  (18), (18) becomes 

i = F(q,  4) + (flc + flu). 
By subtraction and addition of U*, the equation of 
error is obtained: 

= -Ke + (uc + U, - U*) 

d = de + B(u, + U, - U*) 

(23) 

( 2 4  

or equivalently in the other vector form, 

where 

Define V = $eTPe where P is a symmetric posi- 
tive definite matrix satisfying the following Lyapunov 
equation. 

where Q is a positive definite matrix. 
Now, the following theorem is derived based on the 

Lyapunov’s direct method. 

Theorem 2 Consider the robot dynamics described 
by (16 ,  satisfying Assumption 3 - 4, and subject to 

A ~ P + P A = - Q  (26) 

contro I given by 

(27) 

and 

U, i d -  K e + u , l  (28) 
- (eT PB)T 

II eT PB II 
U , l  = - 

.IIMII . (CO + c111il12) (29) 
where VM > 0 i s  a constant specified by the designer. 
Then, V < V, as t --+ CO. 

Proof when V > VM, 
1 
2 
1 
2 
1 

V = - - e T Q e  + eTPB(u - U*) 

= 

5 --eT@+ /IeTPBIIIIF(q, $ 1 1  

- - e T Q e  + eTBB(u,l + F(q,  4)) 

+eT PBu,l 
1 1. --eTQe 
2 

0 

Identification and Control Procedure: The iden- 
tification and control procedure of robot dynamics is 
similar to  that of dynamics (1  , The neural network 
identifier plus PD-type control 1 er, u,, is 

U c  = - N F ( q ,  4) -I- i d  - Ke.  (31) 
If MF is sufficiently accurate to  cancel out the function 
F, robot dynamics becomes asymptotically stable. 

i E Ae (32) 

Even in the case NF does not approximate F, the su- 
pervisory controller guarantees the bounded stability 
of tracking control. 

Simulation : The simple two link robot is consid- 
ered, which has the following M ( q )  and N ( q ,  q).  

~ 1 1  = mllgf + 11 + m2(1: + i& 
+2hk72 COS(P2)  + 12 (33) 

Ml2 = m2(19,2 + Elb2COS(42)) + 12 (34) 
M21 = Ml2 (35) 

M22 = m2lg; + IZ (36) 

= -mzZ1192 sin(qZ)(2iliz + 2) 
+ m l g b l  cos(q1) + mag(llcos(q1) 
+k72cos(q1+ a2)) (37) 

+ m g i g ~  c o s ( q l +  42) (38) 
N21 = m211192 sin(q2)q; 

where ml = 2,  m2 = 1, g = 9.8, lgl = 0.5, 192 = 0.5, 
11 = 1, Z2 = 1, 11 = 0.5, 12 = 0.25, and ql,q2 denote 
the joint angles. 

The desired path in the Cartesian coordinate is 
given by ( z d ( t ) , y d ( t ) )  = 0.5 + 0.3sin(t),0.5 + 
We choose VM = 0.5, Q = diag[lO, .. ., IO], C O  = 10, 
c1 = 10 and K1,K2 are the diagonal matrices whose 
elements on the diagonal are 2. The neural network 
which has the structure of t(4,10,6,2 is used to iden- 
tify the function N ( q , q ) .  The sigmoid functions for 
the output nodes are scaled properly according to the 
variation range of N;(q,  q ) ,  that is, 

0.3 cos(t)). qdl ,  qd2 is calculate 6 by inverse kinematics. 

So(.) = K tanh(z) (39) 

where K is a scale factor. 
The following figures show the results of the identi- 

fication and control of the robot dynamics using neural 
networks under the supervisory control while learning. 
Fig.5 depicts the tracking of the circle at the first rev- 
olution. Fig.6 shows the tracking of the circle at the 
100th revolution. In Fig.6, the tracking is not well 
done at the upper end of the circle because the sam- 
pled data is not as many as the other part of the circle. 
This confirms our prediction that the uniform samples 
can not be achieved in the tracking control of robot 
dynamics. 
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5 Conclusion and Further Study 
This paper is devoted to  guarantee the stability in 

the application of neural network to  dynamics system 
identification. For the certain class of continuous-time 
systems, supervisory control algorithm is proposed to  
assure the stability in the sense of boundedness. Try- 
ing to  get enough samples for neural network train- 
ing, the system may become unstable. The super- 
visory controller guarantees the boundedness of the 
state trajectory. This paper does not deal with the 
classical neural network problem that what kind of 
structure is optimal for the given problem. Our ef- 
forts are mainly devoted to the problem of stability in 
getting the samples. 
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Fig.1 'bajectory of chaotic system (16) in the phase plane 
with u(t) = 0 and q ( 0 )  = za(0) = 2. 
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Fig2 Tracking control when the states revolves 1, 200, 
lo00 times around the unit circle.(-: desired trajectory, - -: l th  revolution, --: 100th revolution, . . .: 1000th rev- 
olution) 
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Fig.3 Approximation of f(x, t )  by N,(x ,  t )  at the first 
revolution.(- -: f(x), -: N f ( x ) )  
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Fig.4 Approximation of f(x,t) by N f ( x ,  t )  at the 1000th 
revolution.(- -: f(x, t ) ,  -: N / ( x ,  t ) )  
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Figd Tracking control at  the fvst revolution.(- -: desired 
trajectory) 

I I l 

. 
I 

I I I 
-1 -0.5 0 O S  1 

X 

Fig.6 'backing control at the 100th revolution.(- -: de- 
sired trajectory) 
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